5 Fourier transform

background image

Fourier
Transform

„Signal Theory” Zdzisław Papir

Periodicity of Fourier series

Limiting behaviour of Fourier series

Limiting form of Fourier series

Fourier transform pairs
Existence of Fourier transform

background image

Periodicity of Fourier
series

„Signal Theory” Zdzisław Papir

 

T

e

X

T

t

x

e

X

t

x

n

T

t

jn

n

n

t

jn

n

2

,

o

o

o









sawtooth signal

time t

period T = 1

background image

Limiting behaviour
of Fourier series

„Signal Theory” Zdzisław

Papir

x(t)

time t

-T/2

x

T

(t)

Periodic extension of a signal window x

T

(t)

through Fourier series

+T/2

 

 

t

x

t

x

T

T

 

background image

Limiting behaviour of Fourier
series

„Signal Theory” Zdzisław Papir

background image

„Signal Theory” Zdzisław Papir

 

T

e

jn

T

T

X

T

n

2

,

1

1

1

1

o

o

   

t

e

t

t

x

1

Limiting behaviour of Fourier
series

background image

„Signal Theory” Zdzisław Papir

 

T

e

jn

T

T

X

T

n

2

,

1

1

1

1

o

o

 

0

0

2

o

 

 

T

n

T

T

X

T

Limiting behaviour of Fourier
series

background image

„Signal Theory” Zdzisław Papir

Limiting behaviour of Fourier
series

 

0

4

1

2

2

1

 

T

T

T

e

T

X

amplitude of the 1st spectrum line of an exponential puls

Fourier series window

 

0

4

1

2

2

1

 

T

T

T

e

T

X

background image

„Signal Theory” Zdzisław Papir

Limiting behaviour of Fourier
series

 

2

2

2

4

1

n

T

e

T

X

T

n

Fourier series
window T

amplitude spectrum –
exponential pulse

background image

„Signal Theory” Zdzisław Papir

Limiting behaviour of Fourier
series

 

2

2

2

4

1

n

T

e

T

X

T

n

Fourier series
window 3T

amplitude spectrum –
exponential pulse

background image

„Signal Theory” Zdzisław Papir

Limiting behaviour of Fourier
series

 

2

2

2

4

1

n

T

e

T

X

T

n

amplitude spectrum –
exponential pulse

Fourier series
window 10T

background image

„Signal Theory” Zdzisław Papir

Limiting behaviour of Fourier
series

 

2

2

2

4

1

n

T

e

T

X

T

n

amplitude spectrum – exponential pulse

Fourier series window
100T

background image

„Signal Theory” Zdzisław Papir

 

 

j

X

j

e

T

TX

T

n

T

n

 

1

1

1

1

Squeezing Fourier series coefficients in FREQUENCY:

 

 

n

T

n

T

n

j

e

T

TX

jn

e

T

TX

n

n

1

1

1

1

o

o

Limiting behaviour of Fourier
series

Squeezing Fourier series coefficients in AMPLITUDE:

background image

„Signal Theory” Zdzisław Papir

Riemann integral

a

b

x

f(x
)

n

x

 

n

x

f

 

 

b

a

n

x

n

n

n

dx

x

f

x

x

f

S

n

0

max

background image

Limiting form of Fourier
series

„Signal Theory” Zdzisław Papir

Fourier series coefficients:

 

 

 

 

2

2

2

2

o

1

T

T

t

j

T

T

t

jn

n

dt

e

t

x

T

TX

dt

e

t

x

T

T

X

n

n

 

 

 

dt

e

t

x

X

T

TX

t

j

T

n

lim

FORWARD FOURIER TRANSFORM:

background image

Limiting form of Fourier series

„Signal Theory” Zdzisław Papir

Fourier series:

   

 

d

e

X

t

x

t

x

t

j

T

T

1

lim

INVERSE FOURIER TRANSFORM:

 

 

 

 

 





n

n

n

t

j

T

n

t

jn

n

n

t

jn

n

T

e

T

TX

t

x

e

T

TX

e

T

X

t

x

2

1

2

1

o

o

o

background image

„Signal Theory” Zdzisław Papir

 

 

 

 

 

 













 

 







n

T

t

t

t

j

n

t

jn

T

t

t

jn

n

t

jn

T

t

t

jn

d

e

x

t

x

e

d

e

x

t

x

e

d

e

x

T

t

x

n

0

0

0

0

0

0

0

0

0

0

2

1

2

1

1

0



n

t

jn

n

e

X

t

x

0

)

(

T

t

t

t

jn

n

dt

e

t

X

T

X

0

0

0

)

(

1

Fourier Integral Theorem

background image

„Signal Theory” Zdzisław Papir

Fourier transform

 

 





 



n

T

t

t

t

j

d

e

x

t

x

n

0

0

2

1

 

 

d

d

e

x

t

x

t

j

 





2

1

 

 

dt

e

t

x

X

t

j

 

 



d

e

d

e

x

t

x

t

j

j

 





2

1

Fourier integral theorem

Forward
Fourier
transform

background image

„Signal Theory” Zdzisław Papir

Inverse Fourier transform

 

 



d

d

e

x

e

t

x

j

t

j





2

1

 

 

dt

e

t

x

X

t

j

Inverse
Fourier
transform

 

 

d

e

X

t

x

t

j

2

1

background image

Fourier transform pairs

„Signal Theory” Zdzisław Papir

TRANSFORM

 

 

dt

e

t

x

X

t

j

 

 

d

e

X

t

x

t

j

1

INVERSE

FORWARD

TRANSFORM
PAIRS

 

 

X

t

x

 

 

 

 

 

X

t

x

t

x

X

1

F

F

background image

Fourier transform pairs

„Signal Theory” Zdzisław Papir

 

 

 

j

dt

e

dt

e

e

X

e

t

t

e

t

t

x

t

j

t

j

t

t

t

1

1

0

,

0

,

0

o

1

o

1

FORWARD FOURIER TRANSFORM:

 

j

e

t

t

1

1

1

background image

Fourier transform pairs

„Signal Theory” Zdzisław Papir

 

j

e

t

t

1

1

1

FOURIER TRANSFORM:

   

t

e

t

t

x

1

time t

 

 

 

j

dt

e

dt

e

e

X

e

t

t

e

t

t

x

t

j

t

j

t

t

t

1

1

0

,

0

,

0

o

1

o

1

background image

Fourier transform pairs

„Signal Theory” Zdzisław Papir

 

 

 

 

 

x

x

x

T

T

dt

e

X

t

T

t

T

t

t

x

T

T

t

j

T

sin

Sa

,

2

Sa

2

,

1

2

,

0

2

2

-

 

2

Sa

T

T

t

T

FOURIER TRANSFORM:

T/2

-T/2

1

 

t

T

 

fT

T

t

x

Sa

2

Sa

frequency f

background image

„Signal Theory” Zdzisław Papir

 

 

 

 

 

 

x

x

x

T

T

dt

e

t

X

t

T

t

T

t

T

t

t

x

t

j

T

T

sin

Sa

,

4

Sa

2

1

2

,

2

1

2

,

0

2

-

 

4

Sa

2

1

2

T

T

t

T

FOURIER TRANSFORM:

T/2

-T/2

 

t

T

Fourier transform pairs

 

2

Sa

4

Sa

2

2

fT

T

t

x

frequency f

background image

„Signal Theory” Zdzisław Papir

Existence of Fourier
transform

Dirichlet conditions are
necessary
for Fourier transform
existence.

Signal x(t) must have only a finite number of maxima
and minima, as well as a finite number of discontinuities
over the entire range [–
, + ].

Signal x(t) is also allowed to be unbounded provided that
it is absolutely integrable:

 

dt

t

x

background image

„Signal Theory”  Zdzisław Papir

Summary

Fourier series is a spectral decomposition of periodic signal or

produces a periodic extension of signal window.

Fourier transform is a tool for spectral decomposition of

nonperiodic signals.

Fourier transform is a limiting case of Fourier series with signal

window being extended up to infinity.

Dirichlet conditions are necessary for Fourier transform

existence.

In engineering applications it is commonly assumed that signals

of limited energy are Fourier transformable.


Document Outline


Wyszukiwarka

Podobne podstrony:
6 i 7 Fourier Transform Properties
Practical Analysis Techniques of Polymer Fillers by Fourier Transform Infrared Spectroscopy (FTIR)
Matlab Fourier Transformation
Properties Of The Classical Fourier Transform, Some Examp
fourier transformata
The Fast Fourier Transform (Fft)
5 Algorytmy wyznaczania dyskretnej transformaty Fouriera (CPS)
cw 7 Dyskretna Transformata Fouriera (DFT)
Transformata Fouriera, wzory i własnosci
cw8 analiza widmowa metoda szybkiej transformaty fouriera (FFT)
Dyskretna transformata Fouriera
Diagnostyka raka szyjki macicy metodą mikrospektroskopii w podczerwieni z transformacją Fourierax
Dyskretna transformata Fouriera
jurlewicz,rachunek prawdopodobieństwa,transformata Fouriera zadania
2010 01 11 Transformata Fouriera
Transformacja Fouriera jest podstawowym narzędziem analizy częstotliwościowej sygnałów
2 Transformata Fouriera
Transformata Fouriera

więcej podobnych podstron