MechKw 03

background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image
background image

Eigenvalue Equations and
Operators

The Schrödinger equation

can be rewritten as

ˆ

H (x)E(x); ˆ

H =

h

2

2m

2

x

2

V(x)

where ˆ

H is the quantum mechanical Hamiltonian



ˆ

(operator

)(function

) (constant)(samefunction

)

(operator)(eigenfunction)

=(eigenvalue)(eigenfunction)

background image
background image

cos;

:

 

2

Some non-linear operators

:

For linear operators the following identities apply

:

A +ˆ

B )ˆ

C = ˆ

A ˆ

C +ˆ

B ˜

C ; ˆ

A (ˆ

B + ˆ

C ) = ˆ

A ˆ

B + ˆ

A ˆ

C

ˆ

A {f(x)g(x)}ˆ

A f(x)ˆ

A g(x)

ˆ

A {kf(x)}k ˆ

A f(x)

Some linear operators

:

x;x

2

;

d

dx

;

d

2

dx

2

Multiplicative

Differential

background image

Operator

ˆ

A Function f

ˆ

A f(x)

d

dx

f f'

(x)

3 f 3f
cos() x cosx

x

x

Rules for operators

:

( ˆ

A ˆ

B )f(x) ˆ

A f(x)ˆ

B f(x): Sum of operators

( ˆ

A ˆ

B )f(x) ˆ

A f(x)ˆ

B f(x):Dif. of operators

15

3

3

)

15

3

(

3

)

5

(

3

)

5

(

ˆ

)

5

)(

3

ˆ

ˆ

(

ˆ

3

2

3

2

3

3

3

x

x

x

x

x

x

D

x

D

dx

d

=

D

Example

background image

ˆ

A ˆ

B f(x) ˆ

A [ ˆ

B f(x)]:product of operators

We first operate on f with the operator '

ˆ

B '

on the right of the operator product,

and

then take the resulting function (

ˆ

B f) and

operate on it with the operator

ˆ

A on the left

of the operator product.

)

(

'

))

(

ˆ

(

ˆ

)

(

ˆ

ˆ

)

(

'

)

(

))

(

(

ˆ

)

(

ˆ

ˆ

ˆ

;

ˆ

x

xf

x

f

D

x

x

f

D

x

x

xf

x

f

x

xf

D

x

f

x

D

x

x

dx

d

=

D

Example

Operators do not necessarily obey the commutative law

:

ˆ

A ˆ

B ˆ

B ˆ

A 0: ˆ

A ˆ

B ˆ

B ˆ

A [ ˆ

A , ˆ

B ]0

Cummutator

:

background image

Example: ˆ

A = X

2

; ˆ

B =

d

dx

ˆ

A ˆ

B f x

2

df

dx

: ˆ

B ˆ

A f =

d(x

2

f)

dx

2xfx

2

df

dx

A ,ˆ

B ]f  2xf

The square of an operator is defined as the product of
the operator with itself

: ˆ

A

2

= ˆ

A ˆ

A

Examples : ˆ

D =

d

dx

ˆ

D ˆ

D f(x)= ˆ

D (ˆ

D f(x))= ˆ

D f'(x)f"(x)

ˆ

D

2

d

2

dx

2

apply

rules

follow

the

where

etc.

,

C

,

B

,

A

operators

linear

with

dealing

be

shall

We

ˆ

ˆ

ˆ

background image
background image
background image

Hermetian Operators

Hermetian Operators

Consider a system described by the state function

.

Let

F

^

be the operator representing the observable F

The average value of

F , or the expectation value is given by

<F>

=



 

 

 

*

F

^

 d

A physical expectation value must be real
Thus :

<F> = <F>



 

 

 

*

F

^

 d



 

 

 

*

F

^

 d





=



 

 

 

(

F

^



d

An operator that satisfy this condition is

Hermitian

One Definition of

Hermitian operator

background image
background image
background image
background image

Funkcje własne odpowiadające tej samej wartości można ortogonalizować

(wartości własne zdegenerowane)

)

deg

(

,...,

2

,

1

ˆ

,

,

eneracji

krotno

śr

g

j

f

F

j

l

l

j

l

0

)

ˆ

(

,

j

l

l

f

F

j

i

j

l

i

l

l

l

l

l

l

l

l

l

l

l

i

l

l

g

j

j

l

j

l

i

l

d

itd

d

d

itd

x

x

N

x

N

)

-f

F

(

c

y

,

,

*

,

3

,

*

1

,

3,1

2

,

*

1

,

2,1

2

,

2

,

3

1

,

1

,

3

3

,

3

l,3

1

,

1

,

2

2

,

2

l,2

1

,

l,1

,

1

,

,

,

Wtedy

x

x

gdzie

.

)

(

)

(

wybierzmy

0

ˆ

wtedy

weźe

background image

n

n

n

For an observable

with the corresponding

operator

ˆ

 we have the eigenvalue equation

:

(IIIa). The meassurement of the quantity represented by

has as the o n l y outcome one of the values

n

n=1,2,3 ....

(IIIb). If the system is in a state described by

n

a meassurement of

will result in the

value

n

background image

Examples of operators and their

eigenfunctions

Example Operator

Eigenfunction Eigenvalue

1

x

exp[ikx]

ik

2

2

x

exp[ikx]

k

2

3

2

x

coskx

k

2

4

2

x

sinkx

k

2

background image

with the eigenfunction f and the eigenvalue k

**

.

**

ˆ

A f kf

ˆ

A (cf) k(cf)

sh

ow

Mu

st

Demonstrate that cf also is an eigenfunction to

ˆ

A

with the same eigenvalue k if c is a constant

proof:

ˆ

A is a Linear operator

ˆ

A (cf)cˆ

A f

*

ˆ

A

(cf) cˆ

A

f

operator

linear

a

be

A

Let ˆ

c is a constant

f is a function

e.g. A =

d

dx

ckf

f is an eigenfunction of

ˆ

A

Rearrangement of constant

factors and QED

k(cf)

background image

we can solve the eigenvalue problem

ˆ



n

n

n

For any such operator

ˆ



We obtain

eigenfunctions

and eigenvalues

The only possible values that can arise from measurements

of the physical observable

are the eigenvalues

n

Postulate 3

background image
background image

A linear operator

ˆ

A will have a set of

eigenfunctions f

n

(x) {n=1,2,3..etc}

and associated eigenvalues k

n

such that

:

The set of eigenfunction {f

n

(x),n 1..}

is orthonormal

:

f

i

(x)

*

all space

f

j

(x)dx

ij

ˆ

A f

n

(x) k

n

f

n

(x)

o if ij

1 if i=j

background image

e

i

e

j



ij

ei

ei

ei

An example of an orthonormal set is the Cartesian unit vectors

An example of an orthonormal function set is

n

(x)=

1

L

sin

nx

L









n=1,2,3,4,5....

n

(x)

*

o

L

m

(x) 

nm

background image

That is, any function g(x) that
depends on the same variables
as the eigenfunctions can be written

g(x)= a

n

f

n

(x)

i=1

all

where

a

n

f

n

(x)

*

g(x)dx

all space

The set of eigenfunction {f

n

(x),n 1..}

forms a complete set.

ei

ei

ei

r

e

i

; i=1,2,3 form a complete set

For any vector

r

v

v (

r

v

r

e

1

)

r

e

1

(

r

v

r

e

2

)

r

e

2

(

r

v

r

e

3

)

r

e

3

background image

Document Outline


Wyszukiwarka

Podobne podstrony:
03 Sejsmika04 plytkieid 4624 ppt
03 Odświeżanie pamięci DRAMid 4244 ppt
podrecznik 2 18 03 05
od Elwiry, prawo gospodarcze 03
Probl inter i kard 06'03
TT Sem III 14 03
03 skąd Państwo ma pieniądze podatki zus nfzid 4477 ppt
03 PODSTAWY GENETYKI
Wyklad 2 TM 07 03 09
03 RYTMY BIOLOGICZNE CZŁOWIEKAid 4197 ppt
Rada Ministrow oficjalna 97 03 (2)
Sys Inf 03 Manning w 06
KOMPLEKSY POLAKOW wykl 29 03 2012

więcej podobnych podstron