Przedziały dla wartości średniej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gdy nie znamy sigma, mała próba |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u alfa z tabl. Rozkł norm dla 1-alfa/2 |
|
|
|
|
t alfa z tablic t-Studenta dla alfa i n-1 stopni swobody |
|
|
|
|
|
|
|
|
|
|
|
|
maksymalny błąd oszacowania |
|
|
|
rozkład normalny s.odwr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
minimalna liczebność próby |
|
|
Jeśli n nie jest liczbą naturalną, to zaokrąglamy n w górę. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
służą do szacowania średniej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
przedział dla wskaźnika struktury (frakcji) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p - frakcja w populacji generalnej , |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n - liczebność badanej próby, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- wartość odczytana z tablic dystrybuanty standaryzowanego rozkładu |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- frakcja w badanej próbie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
maksymalny błąd oszacowania |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
minimalna liczebność próby |
|
|
służy do szacowania wskaźnika struktury |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla dużych prób |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Przedziały dla miar zmiennności (miar dyspersji; miar zróżnicowania) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dla małych prób |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chi^2- odczyt z rozkładu chi^2 dla alfa/2 lub 1-alfa/2 i n-1 stopni swobody |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rozkład.chi.odw |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Estymacja współczynnika korelacji liniowej |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dokonano 100 pomiarów wytrzymałości na ściskanie pewnego typu betonu. Otrzymano następujące wyniki (w kG/cm2): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207, 197, 198, 209, 186, 199, 214, 209, 207, 172, 187, 211, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193, 184, 207, 223, 183, 205, 216, 216, 196, 200, 210, 193, |
|
|
|
|
|
|
|
207 |
197 |
198 |
209 |
186 |
199 |
214 |
209 |
207 |
172 |
187 |
211 |
208, 208, 194, 206, 191, 206, 198, 204, 201, 200, 165, 198, |
|
|
|
|
|
|
|
193 |
184 |
207 |
223 |
183 |
205 |
216 |
216 |
196 |
200 |
210 |
193 |
227, 211, 188, 200, 192, 192, 190, 174, 205, 202, 218, 194, |
|
|
|
|
|
|
|
208 |
208 |
194 |
206 |
191 |
206 |
198 |
204 |
201 |
200 |
165 |
198 |
192, 193, 207, 191, 208, 193, 208, 206, 199, 200, 186, 212, |
|
|
|
|
|
|
|
227 |
211 |
188 |
200 |
192 |
192 |
190 |
174 |
205 |
202 |
218 |
194 |
217, 200, 200, 194, 177, 198, 190, 206, 204, 218, 188, 213, |
|
|
|
|
|
|
|
192 |
193 |
207 |
191 |
208 |
193 |
208 |
206 |
199 |
200 |
186 |
212 |
205, 190, 182, 214, 198, 194, 205, 206, 215, 223, 201, 189, |
|
|
|
|
|
|
|
217 |
200 |
200 |
194 |
177 |
198 |
190 |
206 |
204 |
218 |
188 |
213 |
204, 205, 200, 191, 201, 189, 200, 196, 195, 201, 220, 200, |
|
|
|
|
|
|
|
205 |
190 |
182 |
214 |
198 |
194 |
205 |
206 |
215 |
223 |
201 |
189 |
203, 187,194, 193. |
|
|
|
|
|
|
|
204 |
205 |
200 |
191 |
201 |
189 |
200 |
196 |
195 |
201 |
220 |
200 |
|
|
|
|
|
|
|
|
203 |
187 |
194 |
193 |
|
|
|
|
|
|
|
|
Przeprowadzić analizę statystyczną uzyskanych wyników pomiarów: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) |
obliczyć podstawowe miary stystyczne tj. średnia, odchylenie standardowe i wariancja |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) |
na poziomie ufności 1-alfa = 0,95 zbudować przedział ufności dla średniej wytrzymałości na ściskanie |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) |
na poziomie ufności 1-alfa = 0,90 zbudować przedział ufności dla odchylenia standardowego |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d) |
na poziomie ufności 1-alfa = 0,95 oszacować udział pomiarów, dla których wytrzymałość na ściskanie była większa niż 200 kG/cm2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(wskaźnik struktury) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia |
199,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
odch.stnd. |
11,2289083992338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja |
126,088383838384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa= |
0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
dolna granica |
|
górna granica |
|
|
1-alfa/2= |
0,975 |
|
|
|
|
|
|
|
|
|
|
|
|
|
197,74917439518 |
|
202,15082560482 |
|
|
u alfa= |
1,95996398454005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Interpretacja: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Na poziomie ufności 0,95 można stw że średnia wytrzymałość na ściskanie betonu zawiera się w granicach od 197,75 do 202,15 kG/cm^2 |
|
|
|
|
|
|
c) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dolna granica |
|
górna granica |
|
alfa= |
0,1 |
|
|
|
|
|
|
|
|
10,0589632998928 |
|
12,7068226138563 |
|
1-alfa/2= |
0,95 |
|
Na pozniome ufn 0,90 można stw, że odchylenie standardowe wytrzymałości na ściskanie tego typu betonu zawiera się w przedziale od 10,05 do 12,7 |
|
|
|
|
|
|
|
|
|
|
u alfa= |
1,64485362695147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dolna granica |
|
górna granica |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,362315898373358 |
|
0,557684101626642 |
|
|
|
|
Na poziomie ufn 0,95 można stwierdzić że procent pomiarów powyżej 200kG/cm^2 dla tego typu betonu zawiera się w przedziale od 36.23% do 55,77% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ni= |
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wi= |
0,46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alfa= |
0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1-alfa/2= |
0,975 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u alfa= |
1,95996398454005 |
|
|
|
|
|
|
|
|
|
|
|
|