|
Niektóre tabele są na sztywno, ponieważ koleżanka kopiowała je do wydruku. Te które powinny zostać poprawione zmieniłam. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Efektywność projektów inwestycyjnych. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sylwia Iwańska |
143202 |
|
|
|
|
|
|
|
Natalia Jezierska |
143211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zadanie: Wyznaczyć efektywność projektów inwestycyjnych za pomocą: |
|
|
|
|
|
|
|
|
1) Metody niedyskontowej; |
|
|
|
|
|
|
|
|
2) Metody dyskontowej; |
|
|
|
|
|
|
|
|
3) Metody wyceniającej wartość bieżącą netto NPV; |
|
|
|
|
|
|
|
|
4) Metody wyceniającej wskaźnik rentowności PI ; |
|
|
|
|
|
|
|
|
5) Metody wyceniającej wewnętrzną stopę zwrotu IRR; |
|
|
|
|
|
|
|
|
6) Metody wyceniającej zmodyfikowaną wewnętrzną stopę zwrotu MIRR. |
|
|
|
|
|
|
|
|
Porównać dwa projekty inwestycyjne i wybrać ten, który jest bardziej efektywny. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rozwiązanie: |
|
|
|
|
|
|
|
|
Mamy dwa projekty. Projekt A Sylwii Iwańskiej i projekt B Natalii Jezierskiej. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. Metoda niedyskontowa. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Projekt A: |
|
|
|
Projekt B: |
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
CF |
Suma CF |
|
t |
CF |
Suma CF |
|
|
0 |
-600 |
-600 |
|
0 |
-2000 |
-2000 |
|
|
1 |
-200 |
-800 |
|
1 |
200 |
-1800 |
|
|
2 |
150 |
-650 |
|
2 |
500 |
-1300 |
|
|
3 |
350 |
-300 |
|
3 |
400 |
-900 |
|
|
4 |
250 |
-50 |
|
4 |
-1000 |
-1900 |
|
|
5 |
400 |
350 |
|
5 |
800 |
-1100 |
|
|
6 |
100 |
450 |
|
6 |
600 |
-500 |
|
|
7 |
-150 |
300 |
|
7 |
700 |
200 |
|
|
8 |
-200 |
100 |
|
8 |
1500 |
1700 |
|
|
9 |
350 |
450 |
|
9 |
800 |
2500 |
|
|
10 |
600 |
1050 |
|
10 |
700 |
3200 |
|
|
|
|
|
|
|
|
|
|
|
Wniosek: |
|
|
|
|
|
|
|
|
Projekt A zacznie zarabiać w 5 roku, zaś projekt B w roku 7, dlatego wybieramy projekt A. |
|
|
2. Metoda dyskontowa. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zdyskontowany czas zwrotu: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Projekt A: |
|
r = |
8% |
|
Projekt B: |
|
r = |
8% |
|
|
|
|
|
|
|
|
|
t |
CF |
CF/(1+r)^t |
Suma(CF/(1+r)^t) |
|
t |
CF |
CF/(1+r)^t |
Suma(CF/(1+r)^t) |
0 |
-600 |
-600 |
-600 |
|
0 |
-2000 |
-2000 |
-2000 |
1 |
-200 |
-185,18519 |
-785,1851852 |
|
1 |
200 |
185,185185185185 |
-1814,81481481482 |
2 |
150 |
128,60082 |
-656,5843621 |
|
2 |
500 |
428,669410150892 |
-1386,14540466392 |
3 |
350 |
277,84128 |
-378,7430778 |
|
3 |
400 |
317,532896408068 |
-1068,61250825586 |
4 |
250 |
183,75746 |
-194,9856146 |
|
4 |
-1000 |
-735,029852796453 |
-1803,64236105231 |
5 |
400 |
272,23328 |
77,24766423 |
|
5 |
800 |
544,466557627002 |
-1259,17580342531 |
6 |
100 |
63,016963 |
140,2646269 |
|
6 |
600 |
378,101776129863 |
-881,074027295444 |
7 |
-150 |
-87,523559 |
52,74106763 |
|
7 |
700 |
408,443276683494 |
-472,63075061195 |
8 |
-200 |
-108,05378 |
-55,31270927 |
|
8 |
1500 |
810,403326752964 |
337,772576141014 |
9 |
350 |
175,08714 |
119,7744292 |
|
9 |
800 |
400,199173705167 |
737,971749846181 |
10 |
600 |
277,91609 |
397,6905221 |
|
10 |
700 |
324,235441659279 |
1062,20719150546 |
|
|
|
|
|
|
|
|
|
Wniosek: |
|
|
|
|
|
|
|
|
W projekcie A zaczełybyśmy zarabiać od 5 roku, zaś w projekcie B od 8 roku. Zatem wybieramy projekt A. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. Metoda wyceniająca wartość bieżącą netto NPV; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Projekt A: |
|
r = |
8% |
|
Projekt B: |
|
r = |
8% |
|
|
|
|
|
|
|
|
|
t |
CF |
CF/(1+r)^t |
Suma(CF/(1+r)^t) |
|
t |
CF |
CF/(1+r)^t |
Suma(CF/(1+r)^t) |
0 |
-600 |
-600 |
-600 |
|
0 |
-2000 |
-2000 |
-2000 |
1 |
-200 |
-185,18519 |
-785,1851852 |
|
1 |
200 |
185,185185185185 |
-1814,81481481482 |
2 |
150 |
128,60082 |
-656,5843621 |
|
2 |
500 |
428,669410150892 |
-1386,14540466392 |
3 |
350 |
277,84128 |
-378,7430778 |
|
3 |
400 |
317,532896408068 |
-1068,61250825586 |
4 |
250 |
183,75746 |
-194,9856146 |
|
4 |
-1000 |
-735,029852796453 |
-1803,64236105231 |
5 |
400 |
272,23328 |
77,24766423 |
|
5 |
800 |
544,466557627002 |
-1259,17580342531 |
6 |
100 |
63,016963 |
140,2646269 |
|
6 |
600 |
378,101776129863 |
-881,074027295444 |
7 |
-150 |
-87,523559 |
52,74106763 |
|
7 |
700 |
408,443276683494 |
-472,63075061195 |
8 |
-200 |
-108,05378 |
-55,31270927 |
|
8 |
1500 |
810,403326752964 |
337,772576141014 |
9 |
350 |
175,08714 |
119,7744292 |
|
9 |
800 |
400,199173705167 |
737,971749846181 |
10 |
600 |
277,91609 |
397,6905221 |
|
10 |
700 |
324,235441659279 |
1062,20719150546 |
|
|
|
|
|
|
|
|
|
|
NPV= |
397,6905221 |
|
|
|
NPV= |
1062,20719150546 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wniosek: |
|
|
|
|
|
|
|
|
Obydwa projekty mają dodatnią wartość bieżącą netto, dlatego możemy przyjąć zarówno projekt A jak i projekt B. O wyborze jednego zadecyduje wyższe NPV w projekcie B. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. Metoda wyceniająca wskaźnik rentowności PI ; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Projekt A: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
CFt |
COFt |
CIFt |
COF/(1+r)^t |
CIF/(1+r)^t |
|
|
|
|
|
|
0 |
-600 |
600 |
|
600 |
0 |
|
|
|
1 |
-200 |
200 |
|
185,185185185185 |
0 |
|
|
|
2 |
150 |
|
150 |
0 |
128,600823045267 |
|
|
|
3 |
350 |
|
350 |
0 |
277,841284357059 |
|
|
|
4 |
250 |
|
250 |
0 |
183,757463199113 |
|
|
|
5 |
400 |
|
400 |
0 |
272,233278813501 |
|
|
|
6 |
100 |
|
100 |
0 |
63,0169626883105 |
|
|
|
7 |
-150 |
150 |
|
87,5235592893201 |
0 |
|
|
|
8 |
-200 |
200 |
|
108,053776900395 |
0 |
|
|
|
9 |
350 |
|
350 |
0 |
175,087138496011 |
|
|
|
10 |
600 |
|
600 |
0 |
277,916092850811 |
|
|
|
Suma |
|
|
|
980,7625213749 |
1378,45304345007 |
|
PI = |
1,40549114939431 |
|
|
|
|
|
|
|
|
|
Projekt B: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
CFt |
COFt |
CIFt |
COF/(1+r)^t |
CIF/(1+r)^t |
|
|
|
|
|
|
0 |
-2000 |
2000 |
0 |
2000 |
0 |
|
|
|
1 |
200 |
0 |
200 |
0 |
185,185185185185 |
|
|
|
2 |
500 |
0 |
500 |
0 |
428,669410150892 |
|
|
|
3 |
400 |
0 |
400 |
0 |
317,532896408068 |
|
|
|
4 |
-1000 |
1000 |
0 |
735,029852796453 |
0 |
|
|
|
5 |
800 |
0 |
800 |
0 |
544,466557627002 |
|
|
|
6 |
600 |
0 |
600 |
0 |
378,101776129863 |
|
|
|
7 |
700 |
0 |
700 |
0 |
408,443276683494 |
|
|
|
8 |
1500 |
0 |
1500 |
0 |
810,403326752964 |
|
|
|
9 |
800 |
0 |
800 |
0 |
400,199173705167 |
|
|
|
10 |
700 |
0 |
700 |
0 |
324,235441659279 |
|
|
|
suma |
|
|
|
2735,02985279645 |
3797,23704430191 |
|
PI = |
1,38837133365086 |
|
|
|
|
|
|
|
|
|
Wniosek: |
|
|
|
|
|
|
|
|
Wybieramy projekt A, ponieważ ma on wyższą wartość PI. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5) Metoda wyceniająca wewnętrzną stopę zwrotu IRR; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Projekt A: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
CF |
Suma CF |
CF/(1+r)^t |
r1 = |
17,50% |
|
|
|
0 |
-600 |
-600 |
-600 |
r = |
8% |
|
|
|
1 |
-200 |
-800 |
-170,2156632 |
|
|
|
|
|
2 |
150 |
-650 |
108,6501451 |
|
|
|
|
|
3 |
350 |
-300 |
215,7628259 |
|
|
|
|
|
4 |
250 |
-50 |
131,1650447 |
|
|
|
|
|
5 |
400 |
350 |
178,6107606 |
|
|
|
|
|
6 |
100 |
450 |
38,00293634 |
|
|
|
|
|
7 |
-150 |
300 |
-48,51521261 |
|
|
|
|
|
8 |
-200 |
100 |
-55,05366062 |
|
|
|
|
|
9 |
350 |
450 |
81,99620936 |
|
|
|
|
|
10 |
600 |
1050 |
119,6317642 |
|
|
|
|
|
suma |
|
|
0,035149618 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
CF |
Suma CF |
CF/(1+r)^t |
r1 = |
17,51% |
|
|
|
0 |
-600 |
-600 |
-600 |
r = |
8% |
|
|
|
1 |
-200 |
-800 |
-170,1968326 |
|
|
|
|
|
2 |
150 |
-650 |
108,6261069 |
|
|
|
|
|
3 |
350 |
-300 |
215,6912256 |
|
|
|
|
|
4 |
250 |
-50 |
131,1070122 |
|
|
|
|
|
5 |
400 |
350 |
178,5119857 |
|
|
|
|
|
6 |
100 |
450 |
37,9777182 |
|
|
|
|
7 |
-150 |
300 |
-48,47765511 |
|
Ze wzoru: |
|
8 |
-200 |
100 |
-55,00495569 |
|
|
|
9 |
350 |
450 |
81,91460583 |
|
|
|
|
|
10 |
600 |
1050 |
119,4994839 |
|
IRR A = |
17,50% |
|
|
suma |
|
|
-0,351305031 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Projekt B: |
|
|
|
|
|
|
|
|
|
r1= |
0,155 |
|
|
r2= |
0,1555 |
|
|
|
|
|
|
|
|
|
|
|
t |
CF |
CF/(1+r)^t |
|
t |
CF |
CF/(1+r)^t |
|
|
0 |
-2000 |
-2000 |
|
0 |
-2000 |
-2000 |
|
|
1 |
200 |
173,160173160173 |
|
1 |
200 |
173,085244482908 |
|
|
2 |
500 |
374,805569610764 |
|
2 |
500 |
374,48127322135 |
|
|
3 |
400 |
259,605589340789 |
|
3 |
400 |
259,268730919152 |
|
|
4 |
-1000 |
-561,916860044998 |
|
4 |
-1000 |
-560,944895973933 |
|
|
5 |
800 |
389,206483148051 |
|
5 |
800 |
388,36513784435 |
|
|
6 |
600 |
252,731482563669 |
|
6 |
600 |
252,076030621603 |
|
|
7 |
700 |
255,284325821888 |
|
7 |
700 |
254,51207476579 |
|
|
8 |
1500 |
473,625836404245 |
|
8 |
1500 |
471,98876447881 |
|
|
9 |
800 |
218,701684919709 |
|
9 |
800 |
217,851441848001 |
|
|
10 |
700 |
165,683094636143 |
|
10 |
700 |
164,967556570317 |
|
|
suma |
|
0,88737956043434 |
|
suma |
|
-4,34864122165357 |
IRR B = |
15,51% |
|
|
|
|
|
|
|
|
|
Wniosek: |
|
|
|
|
|
|
|
|
Wbieramy projekt A, w którym IRR jest wyższe. |
|
|
|
|
|
|
|
|
6) Metoda wyceniająca zmodyfikowaną wewnętrzną stopę zwrotu MIRR. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Projekt A: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
CF |
COF |
CIF |
COF/(1+r)^(n-t) |
CIF/(1+r)^(-t) |
r = |
8% |
|
0 |
-600 |
600 |
|
277,916092850811 |
0 |
|
|
|
1 |
-200 |
200 |
|
100,049793426292 |
0 |
|
|
|
2 |
150 |
|
150 |
0 |
174,96 |
|
|
|
3 |
350 |
|
350 |
0 |
440,8992 |
|
|
|
4 |
250 |
|
250 |
0 |
340,12224 |
|
|
|
5 |
400 |
|
400 |
0 |
587,73123072 |
|
|
|
6 |
100 |
|
100 |
0 |
158,6874322944 |
|
|
|
7 |
-150 |
150 |
|
119,074836153025 |
0 |
|
|
|
8 |
-200 |
200 |
|
171,467764060357 |
0 |
|
|
|
9 |
350 |
|
350 |
0 |
699,651619486552 |
|
|
|
10 |
600 |
|
600 |
0 |
1295,35499836367 |
|
|
|
Suma |
|
|
|
668,508486490484 |
3697,40672086462 |
MIRR = |
18,65% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Projekt B: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t |
CF |
COF |
CIF |
COF/(1+r)^(n-t) |
CIF/(1+r)^(-t) |
r= |
8% |
|
0 |
-2000 |
2000 |
0 |
926,386976169369 |
0 |
|
|
|
1 |
200 |
0 |
200 |
0 |
216 |
|
|
|
2 |
500 |
0 |
500 |
0 |
583,2 |
|
|
|
3 |
400 |
0 |
400 |
0 |
503,8848 |
|
|
|
4 |
-1000 |
1000 |
0 |
630,169626883105 |
0 |
|
|
|
5 |
800 |
0 |
800 |
0 |
1175,46246144 |
|
|
|
6 |
600 |
0 |
600 |
0 |
952,1245937664 |
|
|
|
7 |
700 |
0 |
700 |
0 |
1199,67698814566 |
|
|
|
8 |
1500 |
0 |
1500 |
0 |
2776,39531542282 |
|
|
|
9 |
800 |
0 |
800 |
0 |
1599,20370168355 |
|
|
|
10 |
700 |
0 |
700 |
0 |
1511,24749809095 |
|
|
|
suma |
|
|
|
1556,55660305247 |
10517,1953585494 |
MIRR= |
21,05% |
Wniosek: |
|
|
|
|
|
|
|
|
Wybieramy projekt B, w którym MIRR jest wyższe. |
|
|
|
|
|
|
|
|