test serii nie ma powtórzeń x |
|
|
zadanie 14 cd |
|
dla modelu 4 logarytmicznego |
|
|
jest 12 serii |
|
seria 1 |
alfa= |
0,05 |
|
1-alfa/2= |
0,975 |
kwantyl 21 |
|
|
|
|
|
|
mediana z |
reszt= |
-0,549475927942996 |
|
|
alfa/2= |
0,025 |
kwantyl 9 |
|
bierzemy z tablic |
|
|
|
|
|
|
|
mediana z |
modułu= |
1,71408142476459 |
|
|
|
dla m=18, n=12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cena |
Popyt |
|
X |
Y |
f.regresji |
reszty |
serie |
moduły reszt |
serie 2 |
|
|
b1 |
b0 |
|
|
|
1 |
35,969 |
|
0 |
35,969 |
41,4842535767984 |
-5,51525357679842 |
A |
5,51525357679842 |
B |
|
oceny dla B |
-13,9106282735598 |
41,4842535767984 |
|
|
|
1 |
41,55 |
|
0 |
41,55 |
41,4842535767984 |
0,065746423201574 |
B |
0,065746423201574 |
A |
|
S dla Bet |
0,544331579373637 |
1,24312085529715 |
|
|
|
1 |
39,213 |
|
0 |
39,213 |
41,4842535767984 |
-2,27125357679842 |
A |
2,27125357679842 |
B |
|
R^2 |
0,958888827750973 |
3,05153887474442 |
s dla błędu |
|
|
1 |
52,014 |
|
0 |
52,014 |
41,4842535767984 |
10,5297464232016 |
B |
10,5297464232016 |
B |
|
Femp |
653,080068220699 |
28 |
st swobody dla błędu |
|
|
1 |
38,579 |
|
0 |
38,579 |
41,4842535767984 |
-2,90525357679842 |
A |
2,90525357679842 |
B |
|
var R |
6081,40943258586 |
260,732906114141 |
RSS |
|
|
5 |
16,068 |
|
1,6094379124341 |
16,068 |
19,0959610475535 |
-3,0279610475535 |
A |
3,0279610475535 |
B |
|
|
|
|
|
|
|
5 |
22,141 |
|
1,6094379124341 |
22,141 |
19,0959610475535 |
3,0450389524465 |
B |
3,0450389524465 |
B |
|
|
R-liczba serii= |
12 |
|
|
|
5 |
22,821 |
|
1,6094379124341 |
22,821 |
19,0959610475535 |
3,7250389524465 |
B |
3,7250389524465 |
B |
|
|
12=12 |
nie ma podstaw do odrzucenia hipotezy |
|
|
|
5 |
23,705 |
|
1,6094379124341 |
23,705 |
19,0959610475535 |
4,6090389524465 |
B |
4,6090389524465 |
B |
|
|
|
dotyczy to kwantyli |
|
|
|
5 |
18,344 |
|
1,6094379124341 |
18,344 |
19,0959610475535 |
-0,751961047553497 |
A |
0,751961047553497 |
A |
|
|
m=18 (A) |
|
|
|
|
9 |
7,918 |
|
2,19722457733622 |
7,918 |
10,9194792479446 |
-3,00147924794463 |
A |
3,00147924794463 |
B |
|
|
n=12 (B) |
|
|
|
|
9 |
8,439 |
|
2,19722457733622 |
8,439 |
10,9194792479446 |
-2,48047924794463 |
A |
2,48047924794463 |
B |
|
|
|
|
|
|
|
9 |
8,472 |
|
2,19722457733622 |
8,472 |
10,9194792479446 |
-2,44747924794463 |
A |
2,44747924794463 |
B |
|
|
serie1 |
|
|
|
|
9 |
11,78 |
|
2,19722457733622 |
11,78 |
10,9194792479446 |
0,860520752055367 |
B |
0,860520752055367 |
A |
|
|
R= |
12 |
|
|
|
9 |
9,832 |
|
2,19722457733622 |
9,832 |
10,9194792479446 |
-1,08747924794463 |
A |
1,08747924794463 |
A |
|
|
r(18,12)dla 0,025= |
|
9 |
|
|
13 |
4,092 |
|
2,56494935746154 |
4,092 |
5,80419652464482 |
-1,71219652464482 |
A |
1,71219652464482 |
A |
|
|
r(18,12)dla 0,975= |
|
21 |
|
|
13 |
4,992 |
|
2,56494935746154 |
4,992 |
5,80419652464482 |
-0,812196524644823 |
A |
0,812196524644823 |
A |
|
|
|
|
|
|
|
13 |
4,221 |
|
2,56494935746154 |
4,221 |
5,80419652464482 |
-1,58319652464482 |
A |
1,58319652464482 |
A |
|
|
serie 2 |
|
|
|
|
13 |
4,503 |
|
2,56494935746154 |
4,503 |
5,80419652464482 |
-1,30119652464482 |
A |
1,30119652464482 |
A |
|
|
R= |
8 |
|
|
|
13 |
4,102 |
|
2,56494935746154 |
4,102 |
5,80419652464482 |
-1,70219652464482 |
A |
1,70219652464482 |
A |
|
|
r(15,15)dla 0,025 |
|
10 |
|
|
17 |
1,904 |
|
2,83321334405622 |
1,904 |
2,072475927943 |
-0,168475927942996 |
A |
0,168475927942996 |
A |
|
|
r(15,15)dla 0,975 |
|
22 |
|
|
17 |
1,523 |
|
2,83321334405622 |
1,523 |
2,072475927943 |
-0,549475927942996 |
A |
0,549475927942996 |
A |
|
|
|
R<od dolnej wartości hipotezę o |
|
|
|
17 |
1,523 |
|
2,83321334405622 |
1,523 |
2,072475927943 |
-0,549475927942996 |
A |
0,549475927942996 |
A |
|
|
|
o stabilności wariancji |
|
|
|
17 |
2,489 |
|
2,83321334405622 |
2,489 |
2,072475927943 |
0,416524072057004 |
B |
0,416524072057004 |
A |
|
|
|
|
|
|
|
17 |
1,545 |
|
2,83321334405622 |
1,545 |
2,072475927943 |
-0,527475927942996 |
A |
0,527475927942996 |
A |
|
|
|
|
|
|
|
21 |
0,95 |
|
3,04452243772342 |
0,95 |
-0,866966324884359 |
1,81696632488436 |
B |
1,81696632488436 |
B |
|
|
|
|
|
|
|
21 |
0,849 |
|
3,04452243772342 |
0,849 |
-0,866966324884359 |
1,71596632488436 |
B |
1,71596632488436 |
B |
|
|
|
|
|
|
|
21 |
1,078 |
|
3,04452243772342 |
1,078 |
-0,866966324884359 |
1,94496632488436 |
B |
1,94496632488436 |
B |
|
|
|
|
|
|
|
21 |
1,209 |
|
3,04452243772342 |
1,209 |
-0,866966324884359 |
2,07596632488436 |
B |
2,07596632488436 |
B |
|
|
|
|
|
|
|
21 |
0,722 |
|
3,04452243772342 |
0,722 |
-0,866966324884359 |
1,58896632488436 |
B |
1,58896632488436 |
A |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 serii |
|
8 serii |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test adekwatności tykko gd mamy powtórzenia obserwacji |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
normalność reszt- |
|
test shapira |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stabilność wariancji |
|
test serii |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
losowość reszt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|