REYNOLDS (3) DOC


D O Ś W I A D C Z E N I E R E Y N O L D S A

1.Wstęp teoretyczny

Ruch płynów można podzielić na ruch laminarny (czyli uwarstwiony) oraz turbulentny (czyli burzliwy).

Ruch laminarny charakteryzuje się tym, że cząstki cieczy poruszają się prostoliniowo, równolegle do osi podłużnej przewodu. Ruch turbulentny zaś to taki, w którym cząstki cieczy poruszają się w różnych kierunkach ruchem nieuporządkowanym.

Z przeprowadzonych badań i teorii podobieństwa wynika, że przejście z ruchu laminarnego w turbulentny zachodzi przy tej samej wartości wyrażenia Re. Wyrażenie to, nazywane liczbą Reynoldsa, określone jest zależnością:

gdzie: v - średnia prędkość w przekroju poprzecznym przewodu,

D- średnica wewnętrzna przewodu,

u - kinematyczny współczynnik lepkości.

W warunkach technicznych przejście z ruchu laminarnego w turbulentny odpowiada liczbie Reynoldsa bliskiej wartości 2320 i wartość tę nazywa się dolną krytyczną liczbą Reynoldsa.

W przypadku braku zakłóceń przepływu przejście z ruchu laminarnego w burzliwy może odbyć się nawet przy wartości Re = 50000. Wartość tę nazywa się górną krytyczną liczbą Reynoldsa.

Tak więc dla liczb Reynoldsa zawartych pomiędzy 2320 a 50000 można, w zależności od stopnia zakłóceń, uzyskać w przewodzie przepływ laminarny lub turbulentny.

2. Doświadczalne określenie dolnej krytycznej liczby Reynoldsa

Korzystając ze wzoru ,

oraz po uwzględnieniu zależności i , otrzymujemy wzór, z którego można wyznaczyć poszukiwaną wartość liczby Reynoldsa:

gdzie: V - objętość naczynia pomiarowego,

t - czas napełniania naczynia pomiarowego.

Pomiary przeprowadzono dla przewodu o średnicy D=20 mm, w temperaturze T=288 K. Kinematyczny współczynnik lepkości ma wtedy wartość u=1,006 * 10-6 m2/s.

Określenie dolnej krytycznej liczby Reynoldsa przy przejściu z ruchu laminarnego w turbulentny i na odwrót.:

3. Rachunek błędów

Obliczenie średniego odchylenia standardowego

ze wzoru: ,

oraz błędu przeciętnego wartości Re

ze wzoru: .

Obliczenie błędu standardowego średniej arytmetycznej

ze wzoru: .

Przy przejściu z ruchu laminarnego w turbulentny średnia wartość dolnej krytycznej liczby Reynoldsa wynosi Rekrd= 2736. Odpowiednio policzone odchylenie standardowe jest równe s= ±179, a błąd przeciętny wartości Re wynosi t= ±138. Błąd standardowy średniej arytmetycznej wynosi S=±52.

Przy przejściu z ruchu turbulentnego w laminarny średnia wartość dolnej krytycznej liczby Reynoldsa wynosi Rekrd= 2167. Odpowiednio policzone odchylenie standardowe jest równe s= ±152, a błąd przeciętny wartości Re wynosi t= ±124. Błąd standardowy średniej arytmetycznej wynosi S=±44.

4. Obliczenie prędkości granicznej

Znajomość rodzaju przepływu, czyli liczby Reynoldsa pozwala na właściwe obliczenia hydrauliczne przewodów. W praktyce przyjmuje się, że dla liczb Re większych od dolnej krytycznej wartości liczby Reynoldsa istnieje ruch turbulentny. Prędkość odpowiadająca dolnej krytycznej liczbie Reynoldsa nosi nazwę prędkości krytycznej, którą można określić ze wzoru:

[m/s]

Dla przewodu o średnicy D = 20 mm vkr = 1.2 * 10-1 m/s.

Dla przewodu o średnicy D = 30 mm vkr = 7.8 * 10-2 m/s.

5. Wnioski

Z doświadczenia wynikło, że dolna krytyczna liczba Reynoldsa, określona w naszych warunkach laboratoryjnych przy przejściu z ruchu laminarnego w turbulentny jest równa 2736. Jak łatwo zauważyć, jest ona daleka od liczby 50000. Podobnie przy przejściu z ruchu turbulentnego w laminarny jest ona równa tylko 2167, a nie otrzymane w warunkach laboratoryjnych 2320. Otrzymaliśmy zatem bardzo wąski zakres. Należy zatem wnioskować, że układ, w którym obserwowaliśmy przepływ cieczy był mocno niedoskonały. Ponieważ chropowatość w wypadku czystych przewodów szklanych jest sprawą do pominięcia, należy wnioskować, że przewód narażony był na zewnętrzne wpływy mechaniczne. Głównie były to zapewne drgania powietrza, drgania powodowane wlewaniem do zbiornika górnego wody, wypływem jej przez przelew, a także drgania wprowadzane podczas regulacji przepływu zaworem. Nie bez znaczenia były także zaburzenia przepływu wprowadzane w momencie wpływania cieczy do przewodu, a także te powodowane nieprostoliniowością jego ścianek. Należy również dodać, iż podczas pomiarów w jednej z rur znajdował się fragment zardzewiałej blachy (najprawdopodobniej ze skorodowanej ścianki dawno nie czyszczonego zbiornika).

Z błędów pomiarowych należy uwzględnić błąd w określeniu przez obserwatora momentu przejścia z ruchu laminarnego w turbulentny, lub odwrotnie oraz błąd pomiaru czasu napełnienia naczynia pomiarowego. Biorąc jednak pod uwagę, że otrzymane podczas prób wartości liczby Reynoldsa nie różnią się znacznie od siebie, można przyjąć, iż owe błędy pomiarowe nie wpływają znacząco na wynik doświadczenia.

Skład zespołu:

Anna Maskiewicz

Tomasz Musiałowicz

Dariusz Matusiak

Mariusz Pawłowski

Piotr Matulka



Wyszukiwarka

Podobne podstrony:
Wyznaczanie kr liczby Reynoldsa DOC
Wyznaczanie kr liczby Reynoldsa 2 DOC
REYNOL 1 DOC
Krytyczna liczba Reynoldsa DOC
REYNOLDZ DOC
Alastair Reynolds A Spy in Europa (MNQ DOC) [Interzone97 06]
europejski system energetyczny doc
KLASA 1 POZIOM ROZSZERZONY doc Nieznany
5 M1 OsowskiM BalaR ZAD5 doc
Opis zawodu Hostessa, Opis-stanowiska-pracy-DOC
Messerschmitt Me-262, DOC
Opis zawodu Robotnik gospodarczy, Opis-stanowiska-pracy-DOC
Opis zawodu Położna, Opis-stanowiska-pracy-DOC
Opis zawodu Przetwórca ryb, Opis-stanowiska-pracy-DOC
Blessing in disguise(1), Fanfiction, Blessing in disguise zawieszony na czas nie określony, Doc

więcej podobnych podstron