Zjawiska optyczne w przyrodzie


Zjawiska optyczne w przyrodzie

(tęcza, halo, miraże dolny i górny,

zorza polarna, refrakcja w atmosferze)

Tęcza

Tęcza - zjawisko optyczne i meteorologiczne występujące w postaci charakterystycznego wielobarwnego łuku, widocznego gdy Słońce oświetla krople wody w ziemskiej atmosferze. Tęcza powstaje w wyniku rozszczepienia światła załamującego się i odbijającego się wewnątrz kropli wody (np. deszczu) o kształcie zbliżonym do kulistego.

Rozszczepienie światła jest wynikiem zjawiska dyspersji, powodującego różnice w kącie załamania światła o różnej długości fali przy przejściu z powietrza do wody i z wody do powietrza.

Światło widzialne (z antropocentrycznego punktu widzenia) jest widzialną (postrzegalną wzrokiem) częścią widma promieniowania elektromagnetycznego i w zależności od długości fali postrzegane jest w różnych barwach. Kiedy światło słoneczne przenika przez kropelki deszczu, woda rozprasza światło białe ("mieszaninę" fal o różnych długościach), na składowe o różnych długościach fal (różnych barwach), i oko ludzkie postrzega łuk składający się z sześciu kolorów: czerwony, pomarańczowy, żółty, zielony, niebieski i fioletowy. To są właśnie kolory tęczy.

Pomimo faktu, że w tęczy występuje niemal ciągłe widmo kolorów, tradycyjnie uznaje się, że kolorami tęczy są: czerwony (na zewnątrz łuku), pomarańczowy, żółty, zielony, niebieski, indygo i fioletowy (wewnątrz łuku).

Najczęściej obserwowana jest tęcza główna, lecz mogą pojawić się także tęcze wtórne i następne oraz kilka zjawisk optycznych towarzyszących tęczy opisanych poniżej.

Tęcza pojawia się często w mitologii, religii, literaturze i sztuce. Tęczowa flaga stanowiła symbol masońskiego Zakonu Order of the Rainbow Girls (7 barw), a później również osób homoseksualnych (6 barw).

0x01 graphic

U góry po lewej (8) bieg promieni w kropli (1) tworzących tęczę wtórną (5), po prawej (7) tworzących tęczę pierwotną (3). (2) - wewnętrzne odbicie światła. (4) - rozszczepienie światła. (6) - promienie światła białego. (9) - obserwator. Rejon powstawania tęczy pierwotnej (10) i wtórnej (11). (12) - strefa kropel

Wyjaśnienie naukowe

Efekt tęczy może być widoczny wszędzie, gdzie występują krople wody w powietrzu (12) oświetlane przez promienie słoneczne padające z tyłu obserwatora (9), a Słońce znajduje się na stosunkowo niewielkiej wysokości (kącie do poziomu mniejszym niż 40°). Warunkiem uzyskania wyraźnej tęczy jest oświetlenie kropel deszczu (chmury) przez równoległą wiązkę światła słonecznego oraz brak oświetlenia rozproszonego. Najbardziej widowiskowe tęcze można zaobserwować gdy przed obserwatorem pada intensywny deszcz w odległości od 100 m do kilku kilometrów, jednocześnie chmura, z której pada deszcz zaciemnia tło tęczy, pozostała część nieba jest czysta.

Tęcza powstaje również przy wodospadach lub fontannach, dookoła których występują krople wody. Charakterystyczne efekty tęczowe mogą być też czasem zauważone przy podświetlonych chmurach, jako pionowe wstęgi przy odległych deszczach lub virgach, jak również mogą być "sztucznie" uzyskane poprzez rozpylanie kropel wody w powietrzu oświetlonym silnym jednokierunkowym białym światłem.

W specyficznych przypadkach możliwe jest również dostrzeżenie tęczy księżycowej, wywołanej światłem odbitym od Księżyca. Niemniej jednak, ponieważ rozdzielczość ludzkiego oka w warunkach małego naświetlenia nie jest zbyt dobra i człowiek nie widzi kolorów przy słabym oświetleniu, tęcza księżycowa jest postrzegana zazwyczaj jako biały (a nie kolorowy) łuk.

Tęcza główna

Białe światło słoneczne (6) będące mieszaniną fal o różnej długości (kolorze) wchodząc do kropli ulega załamaniu (4), kąt załamania zależy od długości fali świetlnej w wyniku czego dochodzi do rozszczepienia światła na barwne spektrum, następnie światło odbija się od przeciwległej strony kropli, a wychodząc powtórnie załamuje się, zwiększając rozszczepienie.

Kąt pod jakim wychodzą promienie z kropli zależy od miejsca padania światła na kroplę oraz od długości fali świetlnej. Przykładowo najsilniej załamywane światło fioletowe wychodzi pod kątem (w stosunku do promienia padającego) od zera do 40,6° z wyraźnym maksimum intensywności dla kąta 40,3°, światło czerwone załamywane w kącie do 42,3° z maksimum w 42,0°. Istnienie wyraźnych i wąskich maksimów w kątowym rozkładzie światła, spowodowanych zależnością współczynnika odbicia światła od kąta padania (patrz wzory Fresnela),

jest główną, poza rozszczepieniem światła, przyczyną powstawania łuku tęczy. Kąty maksimów nie zależą bezpośrednio od wielkości kropel - zależą jednak od ich kształtu, współczynnika załamania światła.

Słona woda ma wyższy współczynnik załamania, co skutkuje mniejszym kątem widzenia łuku tęczy, co można zaobserwować oglądając tęczę powstającą częściowo na rozbryzgach fal morskich i na kroplach deszczu. Z uwagi na napięcie powierzchniowe krople są niemal kuliste, ale duże krople nie są kuliste, w wyniku czego także może ulec zmianie kąt widzenia łuku tęczy.

Światło wewnątrz kropli nie ulega całkowitemu odbiciu, ale częściowemu, przy czym światło o polaryzacji stycznej do promienia łuku tęczy odbija się intensywnie a światło o polaryzacji prostopadłej słabo. W wyniku tego światło tęczy jest częściowo spolaryzowane liniowo w kierunku stycznym do promienia łuku tęczy (na szczycie łuku pionowo) (patrz kąt Brewstera). Łuk tęczy pierwotnej jest spolaryzowany w około 96%, tęczy wtórnej w około 90%.

Tęcza jako fenomen

Wszystkie oświetlone krople rozszczepiają i odbijają światło w ten sam sposób, ale do oka obserwatora dociera z danej kropli tylko światło rozproszone w jego kierunku. Te właśnie krople są postrzegane jako tworzące tęczę. Z fizycznego punktu widzenia tęcza nie istnieje tak jak przedmiot odbijający światło na danym fragmencie nieba, lecz jest rodzajem efektu optycznego, którego położenie jest związane z położeniem obserwatora i Słońca. W warunkach powstawania tęczy, obserwator patrząc w kierunku tworzącym kąt 42° do promieni słonecznych dostrzeże zawsze łuk tęczy o kolorze czerwonym, dlatego tęcza ma kształt łuku. Światło fioletowe będzie widziane na łuku o kącie widzenia 40,3° i dlatego w tęczy kolor fioletowy jest od środka, a czerwony na zewnątrz tęczy. Bez względu na odległość obserwatora od miejsca powstawania tęczy, jego położenia i innych warunków, jej promień jest widoczny pod kątem 40-42°. Słońce znajdujące się powyżej tego kąta nie wywoła tęczy, teoretycznie będzie ona powstawała poniżej linii horyzontu. Wyjątkiem jest sytuacja, gdy obserwator znajduje się na wzniesieniu, budynku lub w samolocie lub innej sytuacji, w której może obserwować krople poniżej oczu w zadanym kierunku, wówczas tęcza może stanowić nawet pełny okrąg.

Środek łuku tęczy znajduje się zawsze dokładnie na przedłużeniu promieni słonecznych, które przechodziłyby przez oczy obserwatora, czyli na linii cienia tworzonego przez obserwatora. Dla obserwatora znajdującego się na powierzchni ziemi ów środek łuku tęczy jest zawsze poniżej horyzontu, dlatego łuk tęczy stanowi mniej niż pół okręgu.

Tęcza wtórna i następne

Czasami można zaobserwować drugą (wtórną) mniej jasną tęczę, znajdującą się na zewnątrz tęczy właściwej. Tęcza wtórna tworzy łuk o kącie widzenia 50-53° i powstaje w wyniku dwukrotnego odbicia światła wewnątrz kropli wody. Ponieważ odbicie zachodzi dwukrotnie, a różnice w kącie rozproszenia światła w zależności od miejsca padania światła na kroplę są większe, tęcza wtórna jest mniej intensywna i szersza od tęczy pierwotnej.

Trzecia (potrójna) tęcza może być zaobserwowana, jeśli spełnione są odpowiednie warunki takie jak optymalny kąt i intensywność padania promieni słonecznych, dobra widoczność itp. W niektórych przypadkach możliwe jest również występowanie tęczy poczwórnych, w których najbardziej zewnętrzny łuk jest niejednolity,

a kolory ułożone w specyficzny, "pulsacyjny" sposób. Co ciekawe, tęcze tego typu występują po tej samej stronie nieba co Słońce, co czyni je trudnymi do dostrzeżenia z uwagi na intensywność światła samego Słońca.

Tęcza zerowa

Światło wychodzące z tylnej części kropli powoduje powstawanie efektów świetlnych i zgodnie z numeracją efekty te powinny być nazywane przez fizyków tęczą zerową. Światło wychodząc z tyłu kropli też ulega załamaniu, ale pod mniejszym kątem i nie obserwuje się wyraźnego maksimum natężenia dla wybranej fali w jakimś kierunku. Kolory z różnych kropel ulegają ponownemu połączeniu i obserwator nie jest w stanie dostrzec efektu rozszczepienia.

Jaśniejszy obszar wewnątrz tęczy

Promienie padające na krople bliżej środka, niż te tworzące maksimum jasności, ulegają załamaniu pod mniejszym kątem. W wyniku zmieszania światła o różnych barwach powstaje jaśniejszy obszar. Nie zawsze jest on biały, czasami powstają w nim opisane niżej tęcze wielokrotne. Na podobnej zasadzie jasny pas tworzy się na zewnątrz tęczy wtórnej, lecz jest on znacznie słabszy.

Pas Aleksandra

Ciemny fragment nieba leżący pomiędzy obydwiema tęczami jest określany mianem pasa Aleksandra, od imienia Aleksandra z Afrodyzji, który pierwszy opisał to zjawisko. Pociemnienie w tym pasie jest wywołane kontrastem z jaśniejszym obszarem tęczy pierwotnej i wtórnej oraz wnętrza tęczy pierwotnej. Różnice w jasności tych obszarów wynikają z różnic odbicia światła w różnych kierunkach.

Tęcze wielokrotne

Czasami występują przepiękne zjawiska tęczowe składające się z szeregu mniej widocznych łuków znajdujących się wewnątrz tęczy właściwej, a bardzo rzadko również i na zewnątrz łuku tęczy wtórnej. W łukach tych kolory są położone blisko siebie, tak że trudno w nich rozróżnić pełną gamę kolorów tęczy. Tęcze takie noszą nazwę wielokrotnych, a ich występowanie nie jest możliwe do wytłumaczenia przy użyciu optyki geometrycznej układu optycznego jakim jest kropla wody.

Tęcze takie tworzą się w wyniku interferencji promieni światła załamanych pod mniejszym kątem, bo padły bliżej środka kropli, oraz promieni z maksimum, które uległy dyfrakcji (teoria Airy'ego). Gdy te dwa promienie po wyjściu z kropli będą w fazie fali, wzajemnie wzmocnią się (powstaną jaśniejsze kręgi), gdy fale będą miały przeciwne fazy, wytłumią się (kręgi ciemniejsze). Warunki fazowe zależą od długości fali, dlatego kręgi są kolorowe.

Tęcze wielokrotne są najlepiej widoczne, gdy krople są niewielkie i jednakowej wielkości. Sam fakt ich występowania był historycznie pierwszą wskazówką, że światło ma naturę falową, a pierwsze wyjaśnienie tego zjawiska zostało zaproponowane przez Thomasa Younga w 1804 roku.

Wcześniej wspomniano, że światło przechodzące przez kroplę bez odbicia nie tworzy tęczy, ale w wyniku dyfrakcji i interferencji światła, podobnie jak tęcze wielokrotne, powstają efekty kolorystyczne - kolorowe pierścienie wokół Słońca o kącie dochodzącym do 15°. Efekty te, zwane koroną słoneczną, czasami są mylone z powstającym na kryształkach lodu halo o kącie widzenia promienia 22° lub 46°.

Tęcza a odbicie światła

Jeszcze inne wariacje tęczy mogą być zaobserwowane dla przypadków, kiedy światło odbija się od lustra wody zanim zostanie rozszczepione przez krople deszczu. Dochodzi wtedy do powstania tęczy "odbiciowej". Z uwagi na zmianę kąta padania promieni słonecznych (od dołu w górę), środek łuku tęczy znajduje się na niebie, możliwe jest wówczas zaobserwowanie znacznie większej długości łuku niż przy zwykłych tęczach. Przy tęczach "odbiciowych" również możliwe jest wystąpienie pierwotnego i wtórnego łuku. Na zdjęciu obok tęcza odbiciowa, słabo widoczny prawie pionowy łuk w pasie Aleksandra.

Można również mówić o odbiciu tęczy (czy też tęczy odbitej), które występuje gdy rozszczepione światło odbija się od lustra wody zanim dotrze do obserwatora. Odbicie tęczy nie jest odbiciem lustrzanym pierwotnego łuku, ale widoczne jest jako przesunięte o kąt zależny od pozycji Słońca, co jest widoczne na zdjęciu obok.

Dokładne rozwiązanie problemu powstawania tęczy

Teoria tęczy oparta na optyce geometrycznej (tzw. kartezjańska teoria tęczy) wykorzystująca do opisu rozpraszania światła na kroplach wody pojęcie promienia świetlnego, którego drogę określają prawa załamania i odbicia światła na granicy powietrze - kropla jest uproszczeniem, nie wyjaśniającym wszystkich aspektów tęczy. Dokładniejszy opis zjawiska rozpraszania światła na kulistych kroplach daje, znana od 1908 teoria zwana rozwiązania Mie[5]. Rozwiązania Mie, na podstawie równań Maxwella, podają wzór na natężenie rozproszonego światła w postaci zbieżnego szeregu zależnego od długości fali świetlnej, kąta rozproszenia i wielkości kropel.

Halo

Halo (od greckiego hálos - tarcza słoneczna) - zjawisko optyczne zachodzące w atmosferze ziemskiej obserwowane wokół tarczy słonecznej lub księżycowej. Jest to świetlisty, biały lub zawierający kolory tęczy (wewnątrz czerwony, fioletowy na zewnątrz), pierścień widoczny wokół słońca lub księżyca. Część nieba wewnątrz kręgu jest tak samo ciemna jak na zewnątrz. Zjawisko wywołane jest załamaniem na kryształach lodu i odbiciem wewnątrz kryształów lodu znajdujących się w chmurach pierzastych piętra wysokiego (cirrostratus) lub we mgle lodowej.

Najczęściej występuje tzw. małe halo o rozmiarze kątowym 22°, powstające przez załamanie na powierzchniach kryształów o kącie łamiącym 60°. W atmosferze polarnej lub w przypadku atmosfer planetarnych możliwe są okręgi halo o innych promieniach, jeżeli kryształy lodu mają kształt inny niż sześciokątne kolumny lub płytki (np. sześciany). Rzadziej widoczne bywa duże halo o rozmiarze kątowym 46°, powstające podczas załamania światła na krawędziach kryształów wzajemnie do siebie prostopadłych (kryształy lodu mają budowę graniastosłupa prostego o podstawie sześciokątnej).

Wielkość halo określa się na podstawie rozmiarów kątowych. W zależności od punktu obserwacji efekt halo tworzą różne, tego samego kształtu, kryształy w chmurze, oświetlone w ten sam sposób. Do zjawiska nie sposób się zbliżyć, bo jest ono specyficznym obrazem Księżyca lub Słońca. Pozorna odległość do halo wynosi więc odpowiednio: ok. 400 000 km albo ok. 150 mln km. Natomiast zasięg widoczności halo określony jest przez rozmiar chmury, na której rozprasza się światło.

Halo jest często obserwowane w niewielkiej odległości kątowej od słońca i podczas takich obserwacji należy chronić oczy przed bezpośrednio padającym światłem Słońca - ze względu na ryzyko trwałego upośledzenia wzroku. Światło słońca padające bezpośrednio przez dłuższy czas na elementy światłoczułe aparatu fotograficznego lub kamery może je uszkodzić, dlatego podczas fotografowania zjawiska tarczę słoneczną powinno się zasłaniać.

0x01 graphic

0x01 graphic

(1) halo 22°, (2) słońce poboczne, (3) słup słoneczny, (4) krąg parheliczny, (5) łuk okołozenitalny, (6) łuk styczny i halo opisane, (7) halo 46°, (8) podsłońce.

Miraż

Miraż, fatamorgana - zjawisko powstania pozornego obrazu odległego przedmiotu w wyniku różnych współczynników załamania światła w warstwach powietrza o różnej temperaturze, a co za tym idzie, gęstości. Początkowo fatamorganą nazywano miraże pojawiające się w Cieśninie Mesyńskiej, gdzie są one najefektowniejsze. W Polsce pojawiają się na Pustyni Błędowskiej oraz na Wyżynie Śląskiej. Miraże dzielą się na 2 rodzaje - miraż dolny i górny.

Miraż dolny

Miraż dolny obserwuje się pod horyzontem. Decydującym czynnikiem warunkującym jego powstawanie jest dostatecznie silne nagrzanie dużej powierzchni podłoża (np. piasku na pustyni, asfaltowej szosy, ściany dużego budynku itp.). Promienie świetlne są wówczas zakrzywiane w górę, ku chłodniejszemu, a więc gęstszemu powietrzu. Sytuacja taka ma na przykład miejsce na obszarach pustynnych, gdzie pod wieczór piasek oddaje swe ciepło, ogrzewając warstwę powietrza tuż nad swoją powierzchnią, podczas gdy wyższa warstwa jest już chłodna. Zakrzywione promienie docierają do oka obserwatora pozornie z innego kierunku co wywołuje powstanie obrazu zwierciadlanego. Miraże dolne mogą być odwrócone lub proste. Podobnie powstaje miraż obserwowany na rozgrzanej drodze. Wygląda on jak kałuża wody, w której widzimy odbicie. Jest to efekt pozornych odbić dalekiego krajobrazu lub nieba.

Miraż górny

Miraż górny to zjawisko załamania występujące wielokrotnie w kolejnych warstwach powietrza, powodujące że światło rozchodzi się po linii krzywej. Jeżeli obserwator znajdzie się w miejscu, gdzie dochodzi światło odbite od statku, to na przedłużeniu promieni wpadających do jego oka, zobaczy prosty obraz statku na tle nieba.

Zorza polarna

Zorza polarna (Aurora borealis, aurora australis) - zjawisko świetlne obserwowane na wysokich szerokościach geograficznych, występuje głównie za kołem podbiegunowym, chociaż w sprzyjających warunkach bywa widoczna nawet w okolicach 50. równoleżnika. Zdarza się, że zorze polarne obserwowane są nawet w krajach śródziemnomorskich.

Powstawanie zorzy polarnej

Powstawanie zjawiska związane jest z przepływem prądu w jonosferze na wysokości około 100 km ponad powierzchnią Ziemi w obszarze przenikania pasów radiacyjnych i atmosfery ziemskiej.

Podczas rozbłysków Słońce emituje protony o energiach do 1 GeV oraz elektrony o kilka rzędów wielkości mniejszej energii, co wynika z mniejszej masy spoczynkowej tych cząstek. Cząstki te są w większości odchylane przez ziemskie pole magnetyczne. Pułapkowane przez ziemską magnetosferę poruszają się po torze helisy wzdłuż linii pola magnetycznego łączących obydwa ziemskie bieguny magnetyczne powodując wzbudzenia atomów w obszarze polarnym, a skutkiem tego świecenie zorzowe. Atmosfera na dużych wysokościach jest zjonizowana i rozrzedzona, co jest przyczyną także emisji linii wzbronionych. Świecenie zorzowe tworzy ponad 270 linii emisyjnych, głównie tlenu i azotu.

Wiatr słoneczny tworzą emitowane stale przez Słońce protony i elektrony o mniejszych prędkościach, a zatem i energiach, również wtedy, gdy na Słońcu nie obserwuje się plam. Także te są pułapkowane przez ziemskie pasy radiacyjne, ale ze względu na mniejsze energie nie wzbudzają tak intensywnie plazmy jonosferycznej, jak cząstki emitowane podczas rozbłysków i nie powodują większych zórz. Cząstki elementarne z rozbłysków są wysokoenergetyczną fazą wiatru słonecznego. Z powodu różniącego się ładunku protonu i elektronu obiegają Ziemię w przeciwnych kierunkach wytwarzając różnicę potencjału na krańcach magnetosfery (około 40 keV), która może się zmieniać po rozbłyskach i powodować indukcyjne przepływy prądu elektrycznego w jonosferze. Z tego powodu zorze bywają widywane częściej przed lokalną północą niż nad ranem.

Po intensywnych rozbłyskach na Słońcu zorze obserwowano również na średnich szerokościach geograficznych, w tym ponad Polską, ale również w okolicach równikowych. Zjawisko widywano także w dzień, oraz podczas prawie niezaburzonego magnetyzmu.

Wizualne zorze polarne obserwowane były na Jowiszu, a w innych zakresach widmowych na Saturnie, Uranie i Neptunie. W układzie Jowisza na rozciągłość przestrzenną tych zjawisk mają wpływ przepływy plazmy z jednego z księżyców galileuszowych. Zorze były wywoływane - co najmniej dwukrotnie - poprzez detonację ładunku jądrowego grzejącego jonosferę, co zostało skrytykowane przez ekologów. Aparatura amerykańskiego programu badawczego HAARP również wywołała sztuczną zorzę polarną na skutek podgrzania jonosfery falami elektromagnetycznymi w zakresie fal krótkich o dużej energii skupionymi na niewielkiej przestrzeni.

Zorze są obserwowane podczas burz jonosferycznych, a wysoka wówczas jonizacja powoduje zaburzenia w rozchodzeniu się fal radiowych, a nawet zupełny zanik.

Kolory zórz

Rozróżnia się typy systematyczne zórz: pasma, łuki, kurtyny, promienie, korony i inne. Stwierdzono emisje w zakresie barwy zielonej, żółtej i czerwonej, a bardzo często białe. Kolor zjawiska jest skutkiem różnej intensywności linii emisyjnych.

Kolor zorzy zależy również od określonego gazu. Na czerwono i na zielono świeci tlen, natomiast azot świeci w kolorach purpury i bordo. Lżejsze gazy - wodór i hel - świecą w tonacji niebieskiej i fioletowej.

Refrakcja atmosferyczna

Refrakcja atmosferyczna światła, refrakcja astronomiczna, zjawisko pozornego przesunięcia obiektów obserwowanych poprzez znaczne masy powietrza. Najczęściej jest to przesunięcie w pionie, możliwe są również przesunięcia boczne powodowane niejednorodnościami atmosfery.

Refrakcja atmosferyczna światła powoduje widoczną deformację (spłaszczenie) tarczy Słońca i Księżyca (oraz planet przy obserwacjach instrumentalnych) obserwowanych nisko nad horyzontem, a także tzw. zielony błysk Słońca przy jego zachodzie lub wschodzie (najłatwiej obserwowalny w tropikach).

Zjawisko refrakcji atmosferycznej światła występuje również przy obserwacjach odległych obiektów na powierzchni Ziemi, zaburzając pomiary geodezyjne.

0x01 graphic

2 | Strona



Wyszukiwarka

Podobne podstrony:
Zjawiska optyczne w przyrodzie 1
Zjawiska optyczne w przyrodzie
Zjawiska optyczne w przyrodzie 1
Zjawiska optyczne w przyrodzie
Zjawiska optyczne w atmosferze
Niesamowite zjawiska klimat, przyroda, scenariusze kl.6
zludzenia optyczne w przyrodzie
fiza-Zjawiska optyczne, ŚCIĄGI, FIZYKA(sciagi)
zjawiska optyczne prezentacja
Złudzenia optyczne w przyrodzie, fizyka, ciekawostki
Zjawiska optyczne, SZKOŁA, fizyka
Zjawiska optyczne(ofiice 2003)
zjawiska optyczne(2)
zjawiska optyczne 1
Zjawiska optyczne w atmosferze
zjawiska optyczne
Zjawiska optyczne zachodzących w atmonsferze, Zadania domowe
zjawiska optyczne

więcej podobnych podstron