We wszystkich układach zmienialiśmy na wejściu X (oraz wejściu Z) poziom logiczny napięcia z „0” na „1” i odwrotnie i obserwowaliśmy zmiany na wyjściu Y.
a)
Czasy propagacji dla negatora 1 i 3 przy przejściu ze stanu wysokiego na niski wynoszą 10[ns]. Tyle samo wynosi czas dla przejścia ze stanu niskiego na wysoki dla negatora 2. Przejście ze stanu niskiego na wysoki dla NOT-a 1 i 3 wynoszą 15[ns], a przy przejściu ze stanu wysokiego na niski dla negatora 2 czas ten wynosi 5[ns]. Dla tego układu stanem stabilnym jest stan niski, gdyż wynika to z realizacji układu. Bramka AND powinna utrzymywać cały czas stan niski na wyjściu Chwilowe zmiany stanu na wysoki wynikają z czasów propagacji bramek. Czas propagacji bramki AND przy przejściu ze stanu niskiego na wysoki wynosi 20[ns], natomiast przy przejściu z wysokiego na niski wynosi 10[ns]
b)
Układ ten jest analogiczny do układu a) z tą różnicą, że mamy tutaj bramkę XOR. Czasy propagacji negatorów są takie same. Układ ten jest zrealizowany w taki sposób, że na wyjściu powinien zawsze występować stan wysoki zgodnie z tabelą prawdy XOR-a, gdyż na wejściach bramki XOR będą występowały stany przeciwne. Tak się jednak nie dzieje ze względu na czasy propagacji wszystkich bramek i obserwujemy chwilowe skoki z „1” na „0”.
c)
Układ ten składa się z dwóch bramek NOT, dwóch bramek XOR oraz dwóch wejść X i Z, a także jednego wyjścia Y. Obserwowaliśmy pracę tego układu dla dwóch różnych stanów wejścia Z.
Czasy propagacji bramek NOT wynoszą: 10[ns] dla bramki NOT nr 1 oraz 5[ns] dla bramki NOT nr 2 dla przejścia ze stanu wysokiego na niski oraz odpowiednio 15[ns] i 10[ns] przy przejściu ze stanu niskiego na wysoki.
Praca układu przy stanie niskim na wejściu Z:
Na wyjściu Y układu zawsze będziemy mieli stan niski i będzie to stan stabilny. Wynika to z ze sposobu połączenia bramek. Na wejściach pierwszej bramki XOR będziemy mieli zawsze jednakowy stan (ze względu na dwie bramki NOT) niezależnie od stanu na X, co spowoduje pojawienie się „0” na wejściu drugiej bramki XOR, a w konsekwencji „0” na wyjściu Y. Jest to zgodne z tabelą prawdy tej bramki.
Praca układu przy stanie wysokim na wejściu Z:
Stanem stabilnym przy takim układzie sygnałów będzie stan wysoki. Będzie on występował niezależnie od stanu na wejściu sterującym X. Na wejściach pierwszej bramki XOR będziemy mieli takie same stany (ponieważ występuje tu parzysta liczba bramek NOT), niezależnie od stanu wejścia X. Tabela prawdy dla bramki XOR przy jednakowym stanie na wejściach, przypisuje wyjściu stan niski. Ze względu na to, ze wejście drugiej bramki XOR jest połączone z wyjściem XOR-a pierwszego, to mamy za każdym razem stan przeciwny na obu wejściach, co skutkuje pojawieniem się jedynki na wyjściu Y układu. Chwilowa zmiana stanu na wyjściu na poziom „0” związany jest z czasem propagacji bramek.
Wnioski:
Wykonane ćwiczenie pokazuje, że własności poszczególnych elementów układu mają ogromny wpływ na działanie całego układu. Każda z bramek wprowadza pewne opóźnienie w reakcji całego układu na podanie sygnału binarnego. Z tego powodu obserwowaliśmy odstępstwa od stabilności w postaci chwilowych skoków z „0” na „1” i odwrotnie.