Futures. Marking-to-market | ||||||
Problem 55 | ||||||
Tri-Mark receives a $1200,000 from a major contract on December 18. These funds | ||||||
are not needed for six days and, rather than putting them into short-term marketable | ||||||
securities Tri-Mark's Chief Financial Officer (CFO) wants to use these funds to | ||||||
speculate in pork bellies. He purchases 55 contracts. Traded on the | ||||||
Chicago Mercantile Exchange (CME), each pork belly futures contract is for | ||||||
40,000 pounds and requires a $2,150 initial margin and $1,800 maintenance margin. | ||||||
The current futures price for February delivery is $0,5380. The contracts are | ||||||
purchased at this price. | ||||||
(a) What is the initial value of Tri-Mark's margin account ? | ||||||
(b) Immediately after the CFO purchases the contracts, the government issues | ||||||
a major report on dietary fat that is expected to reduce the public's bacon | ||||||
consumption. On succeeding days after the purchase of the contracts, pork | ||||||
belly futures trade at $0,5312, $0,5300, $0,5120, $0,4998, $0,4887, and $0,4880. | ||||||
Compute the changes in the margin account on each of these days. | ||||||
Assuming that Tri-Mark closes its position at the end of sixth day, what | ||||||
is its profit/loss on its speculation ? |
Futures & Options | |||||||||
Problem 56 | |||||||||
A distributor has just purchased DM 375 000 worth of fine German beer for | |||||||||
the central Ohio market and must pay for the beer in 90 days. The distributor | |||||||||
is concerned about changes in the value of the German mark during that | |||||||||
period. It has accumulated the following information: | |||||||||
Today's spot exchange rate: So ($/DM) = 0,5019 | |||||||||
Exchange rate available on three-month futures contract: F1,4 ($/DM) = 0,5028 | |||||||||
Distributor's estimate of the spot exchange rate in three months: S1,4 ($/DM) = 0,5050 | |||||||||
Option information | Call option | Put option | |||||||
Contract size | DM | 62,500.000 | 62,500.000 | ||||||
Exercise price | $/DM | 0.5050 | 0.5060 | ||||||
Premium | $/DM | 0.0010 | 0.0012 | ||||||
(a) If the distributor remains unhedged, how much will he expect to pay | |||||||||
in dollars for the beer ? Draw the payoff pattern. | |||||||||
(b) If currency futures contracts are used to hedge (each contract is for DM | |||||||||
125 000), how much will the distributor pay in dollars for the beer ? Draw | $ | 189375 | |||||||
the payoff pattern for the futures contract and for the hedged position. | |||||||||
(c) If the distributor hedges this exposure with an option, which type of option | 188550 | ||||||||
should he use ? Assuming that the distributor's estimate of the future spot | |||||||||
rate is accurate, should the distributor exercise this option ? If the distributor | |||||||||
exercises the option, how many dollars will he pay for the beer ? Draw | |||||||||
the payoff pattern for the option contract and for the hedged position. | |||||||||
(d) Given your answers to the above questions, which is the better way to | |||||||||
hedge the distributor's currency risk ? |
Option characterictics | ||||||||||||
Problem 57 | ||||||||||||
A firm is thinking of purchasing a put option on the DM. The option has | ||||||||||||
an exercise price of $0,5000 and a premium of $0,05. The current spot | ||||||||||||
rate is $0,5300. | ||||||||||||
(a) Draw the payoff diagram for the option, labelling all of its parts. | ||||||||||||
(b) Is the option in or out of the money ? By how much ? | ||||||||||||
(c) What is the intrinsic value of the option ? | ||||||||||||
(d) What is the time value of the option ? | ||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||
-400 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |||||
280,347.44 zł | 112,138.97 zł | |||||||||||
-495,238.10 zł | -520 | -297,142.86 zł | ||||||||||
-185,003.88 zł |
Call or Put Option | |||||
Problem 58 | |||||
A person interested in speculating in the DM has gathered the following | |||||
information: | |||||
Today's spot exchange rate: So ($/DM) = 0,5019. | |||||
Estimate of the spot exchange rate in six months: S1/2 ($/DM) = 0,5045. | |||||
Option information | Call option | Put option | |||
Contract size | DM | 62.500 | 62.500 | ||
Exercise price | $/DM | 0.5050 | 0.5060 | ||
Premium | $/DM | 0.0010 | 0.0012 | ||
Should he buy a call option or a put option? What will the profits in dollars | |||||
be from this strategy if one DM option contract is purchased? |
Dzień | Cena akcji | stopa zwrotu z akcji | okres opcji | Cena rozl. 350 | Cena rozl. 380 | Dzień | DELTA (350) | DELTA (380) | RHO (350) | RHO (380) | RHO (350) | RHO (380) | D1(1) | D1(2) | D2(1) | D2(2) | Parametry | |||||||||||||||||||||
0 | 330.0 | 90 | #VALUE! | #VALUE! | 0 | 0.34 | 0.11 | 0.26 | 0.08 | 0.30 | 0.09 | -0.425905000229335 | -1.24828598259905 | -0.525905000229335 | -1.34828598259906 | Cena akcji | 330 | |||||||||||||||||||||
1 | 336.6 | 0.02 | 89 | #VALUE! | #VALUE! | 1 | 0.41 | 0.15 | 0.32 | 0.11 | 0.37 | 0.12 | -0.2309710395737 | -1.057959234364 | -0.330413932174875 | -1.15740212696518 | r - wolna od ryzyka | 4.5% | ||||||||||||||||||||
2 | 343.2 | 0.019607843137255 | 88 | #VALUE! | #VALUE! | 2 | 0.48 | 0.19 | 0.38 | 0.14 | 0.45 | 0.17 | -0.037730563582424 | -0.8694042813915 | -0.136613210077033 | -0.968286927886109 | Odch. stand stopy zwrotu | 0.2 | ||||||||||||||||||||
3 | 349.8 | 0.019230769230769 | 87 | #VALUE! | #VALUE! | 3 | 0.56 | 0.25 | 0.44 | 0.18 | 0.52 | 0.22 | 0.153955078955928 | -0.682484716369177 | 0.055635870930911 | -0.780803924394195 | p = | 40% | ||||||||||||||||||||
4 | 356.4 | 0.018867924528302 | 86 | #VALUE! | #VALUE! | 4 | 0.63 | 0.31 | 0.49 | 0.23 | 0.60 | 0.28 | 0.344219445245113 | -0.497069317051362 | 0.246466923254345 | -0.59482183904213 | ||||||||||||||||||||||
5 | 363.0 | 0.018518518518519 | 85 | #VALUE! | #VALUE! | 5 | 0.70 | 0.38 | 0.55 | 0.28 | 0.67 | 0.34 | 0.533191522805268 | -0.313031526741812 | 0.436008991224513 | -0.410214058322567 | WIBOR2W | 4.61% | ||||||||||||||||||||
6 | 363.0 | 0 | 84 | #VALUE! | #VALUE! | 6 | 0.70 | 0.38 | 0.54 | 0.27 | 0.67 | 0.34 | 0.534486964411124 | -0.316758224476089 | 0.437877786103195 | -0.413367402784019 | + powyżej | 2% | ||||||||||||||||||||
weekend | 7 | 363.0 | 0 | 83 | #VALUE! | #VALUE! | 7 | 0.70 | 0.37 | 0.54 | 0.27 | 0.67 | 0.34 | 0.535816972744804 | -0.320540845827653 | 0.439784570805551 | -0.416573247766906 | WIBOR2W+5% | 6.61% | |||||||||||||||||||
8 | 369.6 | 0.018181818181818 | 82 | #VALUE! | #VALUE! | 8 | 0.77 | 0.45 | 0.58 | 0.32 | 0.74 | 0.41 | 0.725952718644005 | -0.135610970483637 | 0.630500578222162 | -0.23106311090548 | ||||||||||||||||||||||
9 | 376.2 | 0.017857142857143 | 81 | #VALUE! | #VALUE! | 9 | 0.82 | 0.52 | 0.62 | 0.38 | 0.79 | 0.48 | 0.915086863675855 | 0.048221194110824 | 0.820218533870804 | -0.046647135694228 | Cena wykonania 1 | 350 | ||||||||||||||||||||
10 | 382.8 | 0.017543859649123 | 80 | #VALUE! | #VALUE! | 10 | 0.87 | 0.59 | 0.65 | 0.43 | 0.84 | 0.55 | 1.10334060188084 | 0.23107384785211 | 1.00905969772263 | 0.136792943693904 | Cena wykonania 2 | 380 | ||||||||||||||||||||
11 | 389.4 | 0.017241379310345 | 79 | #VALUE! | #VALUE! | 11 | 0.90 | 0.66 | 0.67 | 0.48 | 0.88 | 0.63 | 1.29083244038641 | 0.413062371486226 | 1.1971426449027 | 0.319372576002525 | Termin opcji (w dniach) | 90 | ||||||||||||||||||||
12 | 396.0 | 0.016949152542373 | 78 | #VALUE! | #VALUE! | 12 | 0.93 | 0.72 | 0.69 | 0.52 | 0.92 | 0.69 | 1.47767858837838 | 0.594299707975198 | 1.38458365475325 | 0.501204774350072 | ||||||||||||||||||||||
13 | 396.0 | 0 | 77 | #VALUE! | #VALUE! | 13 | 0.93 | 0.72 | 0.68 | 0.51 | 0.92 | 0.69 | 1.48529091976538 | 0.596194317015074 | 1.39279467359531 | 0.503698070844996 | ||||||||||||||||||||||
weekend | 14 | 396.0 | 0 | 76 | #VALUE! | #VALUE! | 14 | 0.93 | 0.73 | 0.67 | 0.51 | 0.92 | 0.69 | 1.49306580520225 | 0.598138998325186 | 1.40117214685498 | 0.506245339977918 | |||||||||||||||||||||
15 | 402.6 | 0.016666666666667 | 75 | #VALUE! | #VALUE! | 15 | 0.95 | 0.78 | 0.68 | 0.55 | 0.94 | 0.75 | 1.68207816112212 | 0.781204931307811 | 1.59079106820459 | 0.689917838390283 | ||||||||||||||||||||||
16 | 409.2 | 0.016393442622951 | 74 | #VALUE! | #VALUE! | 16 | 0.97 | 0.83 | 0.69 | 0.58 | 0.96 | 0.81 | 1.87073879911932 | 0.963799014364187 | 1.78006232906108 | 0.87312254430595 | ||||||||||||||||||||||
17 | 415.8 | 0.016129032258065 | 73 | #VALUE! | #VALUE! | 17 | 0.98 | 0.87 | 0.69 | 0.60 | 0.98 | 0.85 | 2.05916345778735 | 1.14603288590985 | 1.96910175054664 | 1.05597117866914 | ||||||||||||||||||||||
18 | 422.4 | 0.015873015873016 | 72 | #VALUE! | #VALUE! | 18 | 0.99 | 0.91 | 0.68 | 0.62 | 0.98 | 0.89 | 2.24746720505965 | 1.32801731506877 | 2.15802448595965 | 1.23857459596878 | ||||||||||||||||||||||
19 | 429.0 | 0.015625 | 71 | #VALUE! | #VALUE! | 19 | 0.99 | 0.93 | 0.68 | 0.63 | 0.99 | 0.92 | 2.43576478515741 | 1.50986253607547 | 2.34694536786091 | 1.42104311877897 | ||||||||||||||||||||||
20 | 429.0 | 0 | 70 | #VALUE! | #VALUE! | 20 | 0.99 | 0.94 | 0.67 | 0.62 | 0.99 | 0.92 | 2.45105410054358 | 1.51856171670103 | 2.36286239017476 | 1.43037000633221 | ||||||||||||||||||||||
weekend | 21 | 429.0 | 0 | 69 | #VALUE! | #VALUE! | 21 | 0.99 | 0.94 | 0.66 | 0.62 | 0.99 | 0.93 | 2.46668938212665 | 1.52746411385448 | 2.37912987854956 | 1.43990461027739 | |||||||||||||||||||||
22 | 435.6 | 0.015384615384616 | 68 | #VALUE! | #VALUE! | 22 | 1.00 | 0.96 | 0.65 | 0.62 | 0.99 | 0.95 | 2.65832766024476 | 1.71222152878753 | 2.57140496150872 | 1.6252988300515 | ||||||||||||||||||||||
23 | 442.2 | 0.015151515151515 | 67 | #VALUE! | #VALUE! | 23 | 1.00 | 0.97 | 0.64 | 0.62 | 1.00 | 0.96 | 2.85028897556457 | 1.89714850092372 | 2.76400778152761 | 1.81086730688676 | ||||||||||||||||||||||
24 | 448.8 | 0.014925373134328 | 66 | #VALUE! | #VALUE! | 24 | 1.00 | 0.98 | 0.64 | 0.62 | 1.00 | 0.98 | 3.04269539063619 | 2.08236130092618 | 2.95706050677842 | 1.99672641706841 | ||||||||||||||||||||||
25 | 455.4 | 0.014705882352941 | 65 | #VALUE! | #VALUE! | 25 | 1.00 | 0.99 | 0.63 | 0.62 | 1.00 | 0.99 | 3.2356704208438 | 2.26797734160284 | 3.15068676228392 | 2.18299368304296 | ||||||||||||||||||||||
26 | 462.0 | 0.014492753623189 | 64 | #VALUE! | #VALUE! | 26 | 1.00 | 0.99 | 0.62 | 0.61 | 1.00 | 0.99 | 3.42933942593498 | 2.45411554767432 | 3.34501202166383 | 2.36978814340317 | ||||||||||||||||||||||
27 | 462.0 | 0 | 63 | #VALUE! | #VALUE! | 27 | 1.00 | 0.99 | 0.61 | 0.60 | 1.00 | 0.99 | 3.45429119872634 | 2.47135792082553 | 3.37062519607293 | 2.38769191817212 | ||||||||||||||||||||||
weekend | 28 | 462.0 | 0 | 62 | #VALUE! | #VALUE! | 28 | 1.00 | 0.99 | 0.60 | 0.59 | 1.00 | 0.99 | 3.47986156959912 | 2.48903311845735 | 3.39686223894587 | 2.40603378780409 | |||||||||||||||||||||
29 | 458.9 | -0.00661 | 61 | #VALUE! | #VALUE! | 29 | 1.00 | 0.99 | 0.59 | 0.58 | 1.00 | 0.99 | 3.42552007542356 | 2.42660309455513 | 3.3431928151887 | 2.34427583432027 | ||||||||||||||||||||||
30 | 455.9 | -0.006653982826483 | 60 | #VALUE! | #VALUE! | 30 | 1.00 | 0.99 | 0.58 | 0.57 | 1.00 | 0.99 | 3.36997011739146 | 2.36276322690417 | 3.28832045929869 | 2.28111356881139 | ||||||||||||||||||||||
31 | 452.8 | -0.006698554895721 | 59 | #VALUE! | #VALUE! | 31 | 1.00 | 0.99 | 0.57 | 0.56 | 1.00 | 0.99 | 3.31316830144872 | 2.29746162406272 | 3.23220191610545 | 2.21649523871944 | ||||||||||||||||||||||
32 | 449.8 | -0.006743728128794 | 58 | #VALUE! | #VALUE! | 32 | 1.00 | 0.99 | 0.56 | 0.55 | 1.00 | 0.98 | 3.25506893198624 | 2.23064358243399 | 3.17479163479429 | 2.15036628524204 | ||||||||||||||||||||||
33 | 446.7 | -0.006789514770533 | 57 | #VALUE! | #VALUE! | 33 | 1.00 | 0.98 | 0.55 | 0.54 | 1.00 | 0.98 | 3.1956238459867 | 2.16225138027573 | 3.11604160341127 | 2.08266913770031 | ||||||||||||||||||||||
34 | 446.7 | 0 | 56 | #VALUE! | #VALUE! | 34 | 1.00 | 0.99 | 0.54 | 0.53 | 1.00 | 0.98 | 3.22174099048085 | 2.17918281109447 | 3.14285992670619 | 2.10030174731981 | ||||||||||||||||||||||
weekend | 35 | 446.7 | 0 | 55 | #VALUE! | #VALUE! | 35 | 1.00 | 0.99 | 0.53 | 0.52 | 1.00 | 0.98 | 3.24858793741004 | 2.19659465005931 | 3.17041434141298 | 2.11842105406225 | |||||||||||||||||||||
36 | 443.7 | -0.006835927400589 | 54 | #VALUE! | #VALUE! | 36 | 1.00 | 0.98 | 0.52 | 0.51 | 1.00 | 0.98 | 3.18764404556851 | 2.1259547625833 | 3.11018437864436 | 2.04849509565915 | ||||||||||||||||||||||
37 | 440.6 | -0.006882978944957 | 53 | #VALUE! | #VALUE! | 37 | 1.00 | 0.98 | 0.51 | 0.50 | 1.00 | 0.98 | 3.12521943041121 | 2.05356101525831 | 3.04848033418973 | 1.97682191903684 | ||||||||||||||||||||||
38 | 437.6 | -0.006930682687972 | 52 | #VALUE! | #VALUE! | 38 | 1.00 | 0.98 | 0.50 | 0.49 | 1.00 | 0.97 | 3.06125455547571 | 1.97934080220627 | 2.9852428604691 | 1.90332910719966 | ||||||||||||||||||||||
39 | 434.5 | -0.006979052284821 | 51 | #VALUE! | #VALUE! | 39 | 1.00 | 0.97 | 0.49 | 0.48 | 1.00 | 0.97 | 2.99568630003615 | 1.90321704067859 | 2.92040903476524 | 1.82793977540768 | ||||||||||||||||||||||
40 | 431.5 | -0.007028101774569 | 50 | #VALUE! | #VALUE! | 40 | 1.00 | 0.97 | 0.48 | 0.46 | 1.00 | 0.96 | 2.9284476640149 | 1.82510779602585 | 2.85391206476491 | 1.75057219677586 | ||||||||||||||||||||||
41 | 431.5 | 0 | 49 | #VALUE! | #VALUE! | 41 | 1.00 | 0.97 | 0.47 | 0.46 | 1.00 | 0.96 | 2.95573185882226 | 1.84119028366722 | 2.881945380085 | 1.76740380492996 | ||||||||||||||||||||||
weekend | 42 | 431.5 | 48 | #VALUE! | #VALUE! | 42 | 1.00 | 0.97 | 0.46 | 0.45 | 1.00 | 0.96 | 2.9838896638344 | 1.85779812656652 | 2.91085998950038 | 1.78476845223249 | ||||||||||||||||||||||
INPUTS | ||||||||||||||||||||||||||||||||||||||
cena akcji | 200 | |||||||||||||||||||||||||||||||||||||
r - wolna od ryzyka | 7% | |||||||||||||||||||||||||||||||||||||
odch. standardowe stopy zwrotu akcji | 0.2 | |||||||||||||||||||||||||||||||||||||
Dzień | Cena akcji | stopa zwrotu z akcji | okres opcji | Cena rozl. 350 | Cena rozl. 380 | Dzień | p = | 30% | ||||||||||||||||||||||||||||||
0 | 291.6 | 90 | #VALUE! | #VALUE! | 0 | |||||||||||||||||||||||||||||||||
1 | 298.2 | 0.022635666546632 | 89 | #VALUE! | #VALUE! | 1 | WIBOR2W | 5.54% | ||||||||||||||||||||||||||||||
2 | 304.8 | 0.022134634344479 | 88 | #VALUE! | #VALUE! | 2 | dadatkowo | 5% | ||||||||||||||||||||||||||||||
3 | 311.4 | 0.021655302149774 | 87 | #VALUE! | #VALUE! | 3 | WIBOR2W+5% | 10.54% | ||||||||||||||||||||||||||||||
4 | 318.0 | 0.02119629008356 | 86 | #VALUE! | #VALUE! | 4 | ||||||||||||||||||||||||||||||||
5 | 324.6 | 0.020756332831787 | 85 | #VALUE! | #VALUE! | 5 | strike price A | 230 | ||||||||||||||||||||||||||||||
6 | 324.6 | 0 | 84 | #VALUE! | #VALUE! | 6 | strike price B | 250 | ||||||||||||||||||||||||||||||
weekend | 7 | 324.6 | 0 | 83 | #VALUE! | #VALUE! | 7 | maturity (w dniach) | 90 | |||||||||||||||||||||||||||||
8 | 331.2 | 0.020334267997343 | 82 | #VALUE! | #VALUE! | 8 | ||||||||||||||||||||||||||||||||
9 | 337.8 | 0.019929025844887 | 81 | #VALUE! | #VALUE! | 9 | ||||||||||||||||||||||||||||||||
10 | 344.4 | 0.019539620247966 | 80 | #VALUE! | #VALUE! | 10 | ||||||||||||||||||||||||||||||||
11 | 351.0 | 0.019165140677136 | 79 | #VALUE! | #VALUE! | 11 | dywidenda | 10% | ||||||||||||||||||||||||||||||
12 | 357.6 | 0.018804745092049 | 78 | #VALUE! | #VALUE! | 12 | ustalenie prawa w t=15 | 16 | ||||||||||||||||||||||||||||||
13 | 357.6 | 0 | 77 | #VALUE! | #VALUE! | 13 | wypłata w t=16 | |||||||||||||||||||||||||||||||
weekend | 14 | 357.6 | 0 | 76 | #VALUE! | #VALUE! | 14 | |||||||||||||||||||||||||||||||
15 | 364.2 | 0.018457653620715 | 75 | #VALUE! | #VALUE! | 15 | ||||||||||||||||||||||||||||||||
16 | 370.8 | 0.018123142926067 | 74 | #VALUE! | #VALUE! | 16 | wys dyw | 37.0775244157417 | ||||||||||||||||||||||||||||||
17 | 401.0 | 0.081450961130453 | 73 | #VALUE! | #VALUE! | 17 | ||||||||||||||||||||||||||||||||
18 | 407.6 | 0.016459869022261 | 72 | #VALUE! | #VALUE! | 18 | payment | 370.5 | ||||||||||||||||||||||||||||||
19 | 414.2 | 0.01619332894873 | 71 | #VALUE! | #VALUE! | 19 | ||||||||||||||||||||||||||||||||
20 | 414.2 | 0 | 70 | #VALUE! | #VALUE! | 20 | ||||||||||||||||||||||||||||||||
weekend | 21 | 414.2 | 0 | 69 | #VALUE! | #VALUE! | 21 | 291.575244157417 | -91.5752441574167 | |||||||||||||||||||||||||||||
22 | 420.8 | 0.015935283658556 | 68 | #VALUE! | #VALUE! | 22 | ||||||||||||||||||||||||||||||||
23 | 427.4 | 0.01568533342121 | 67 | #VALUE! | #VALUE! | 23 | ||||||||||||||||||||||||||||||||
24 | 434.0 | 0.015443103198483 | 66 | #VALUE! | #VALUE! | 24 | Sd=200-wartość dyw/(1+rf)^dzień dyw/360 | |||||||||||||||||||||||||||||||
25 | 440.6 | 0.015208240766854 | 65 | #VALUE! | #VALUE! | 25 | ||||||||||||||||||||||||||||||||
26 | 447.2 | 0.014980415008615 | 64 | #VALUE! | #VALUE! | 26 | ||||||||||||||||||||||||||||||||
27 | 447.2 | 0 | 63 | #VALUE! | #VALUE! | 27 | ||||||||||||||||||||||||||||||||
weekend | 28 | 447.2 | 0 | 62 | #VALUE! | #VALUE! | 28 | |||||||||||||||||||||||||||||||
29 | 444.1 | -0.006829134751755 | 61 | #VALUE! | #VALUE! | 29 | ||||||||||||||||||||||||||||||||
30 | 441.1 | -0.006876092514099 | 60 | #VALUE! | #VALUE! | 30 | ||||||||||||||||||||||||||||||||
31 | 438.0 | -0.006923700519411 | 59 | #VALUE! | #VALUE! | 31 | ||||||||||||||||||||||||||||||||
32 | 435.0 | -0.006971972368117 | 58 | #VALUE! | #VALUE! | 32 | ||||||||||||||||||||||||||||||||
33 | 431.9 | -0.007020922042597 | 57 | #VALUE! | #VALUE! | 33 | ||||||||||||||||||||||||||||||||
34 | 431.9 | 0 | 56 | #VALUE! | #VALUE! | 34 | ||||||||||||||||||||||||||||||||
weekend | 35 | 431.9 | 0 | 55 | #VALUE! | #VALUE! | 35 | |||||||||||||||||||||||||||||||
36 | 428.9 | -0.007070563920681 | 54 | #VALUE! | #VALUE! | 36 | ||||||||||||||||||||||||||||||||
37 | 425.8 | -0.007120912789735 | 53 | #VALUE! | #VALUE! | 37 | ||||||||||||||||||||||||||||||||
38 | 422.7 | -0.007171983861341 | 52 | #VALUE! | #VALUE! | 38 | ||||||||||||||||||||||||||||||||
39 | 419.7 | -0.007223792786624 | 51 | #VALUE! | #VALUE! | 39 | ||||||||||||||||||||||||||||||||
40 | 416.6 | -0.007276355672242 | 50 | #VALUE! | #VALUE! | 40 | ||||||||||||||||||||||||||||||||
41 | 416.6 | 0 | 49 | #VALUE! | #VALUE! | 41 | ||||||||||||||||||||||||||||||||
weekend | 42 | 417.6 | 48 | #VALUE! | #VALUE! | 42 |
Black-Scholes Model. Put-Call Parity | |||||||||
Problem 59 | |||||||||
Consider a call option on the stock of Arkla Natural Gas. The stock currently | |||||||||
trades for $22,75 per share. The option has one month to expiration and an | |||||||||
exercise price of $20,00. The riskless interest rate is 5% (annually) and the variance | |||||||||
is 0,45. | |||||||||
(a) What is the value of the call option? | |||||||||
(b) The price exceeds $2,75. Why? | |||||||||
(c) Suppose the risk-free rate was 7% instead of 5%. Find the option's value | |||||||||
Is this result consistent with your expectation ? | |||||||||
#VALUE! | |||||||||
-90 | 110 | ||||||||
10.00 zł | |||||||||
2.9999999985 | |||||||||
42 | |||||||||
84 | |||||||||
26.6666666666667 |
Swap terminology | |||||||
Problem 60 | |||||||
Gettman Inc., a manufacturer of sports footwear, recently negotiated | |||||||
a ten-year, $5 million bank loan with Texas Commerce Bank (TCB). The loan | |||||||
requires semiannual payments based on a floating-rate index of six-month | |||||||
LIBOR + 1%. Furthermore, the loan contains a covenant stipulating that | |||||||
Gettman should hedge within the next 60 days, to the degree possible, | |||||||
the interest rate risk in the loan. The CFO of Gettman decides to achive this | |||||||
objective by entering into an interest swap, where the firm will receive floating | |||||||
and pay fixed. The swap dealer quotes ten year swaps at "80-87". The current | |||||||
ten-year Treasury bond yield is 7%. | |||||||
(a) What is the percentage coupon (as a function of LIBOR, on a 365-day | |||||||
basis) received by TCB on this loan? | |||||||
(b) What is the fixed rate paid by Gettman Inc. to the dealer? | |||||||
(c) What is the floating rate paid by the dealer to the firm? | |||||||
(d) What is the net interest cost for Gettman on its borrowed funds? | |||||||
(e) Can you offer a plausible reason why TCB may want the firm to hedge the | |||||||
interest rate risk when presumably the bank itself could have provided a | |||||||
fixed-rate loan to the firm? |
Swap. Economic value | ||||||||||||
Problem 61 | ||||||||||||
Consider a five-year, semiannual settlement, $100 million notional principal | ||||||||||||
8%-versus-LIBOR interest rate swap between Firm X (the fixed payer) and | ||||||||||||
Firm Y (the fixed receiver). Also suppose that just after the sixth payment (i.e., | ||||||||||||
after three years), Firm X falls into financial troubles and files for Chapter 7. | ||||||||||||
(a) What is the loss per period to Firm Y if the market today offers swaps for a | ||||||||||||
fixed rate 7,2% against LIBOR flat? | ||||||||||||
(b) What is the economic value of the swap? | ||||||||||||
(c) If instead the market today offers swaps for a fixed rate of 8,4% against the | ||||||||||||
LIBOR, what is the loss to Firm Y? What is the economic value of the swap | ||||||||||||
in this case? | ||||||||||||
722,570.16 zł | ||||||||||||
-200000 | #VALUE! | ex 72 | ||||||||||
8000000 | 7200000 | |||||||||||
4400000 | because we are calculating it per period |