Zadanie nr2i3 Nowakowski


Overview

55
56
57
58
Arkusz1
59
60
61


Sheet 1: 55

Futures. Marking-to-market





Problem 55





Tri-Mark receives a $1200,000 from a major contract on December 18. These funds





are not needed for six days and, rather than putting them into short-term marketable





securities Tri-Mark's Chief Financial Officer (CFO) wants to use these funds to





speculate in pork bellies. He purchases 55 contracts. Traded on the





Chicago Mercantile Exchange (CME), each pork belly futures contract is for





40,000 pounds and requires a $2,150 initial margin and $1,800 maintenance margin.





The current futures price for February delivery is $0,5380. The contracts are





purchased at this price.





(a) What is the initial value of Tri-Mark's margin account ?





(b) Immediately after the CFO purchases the contracts, the government issues





a major report on dietary fat that is expected to reduce the public's bacon





consumption. On succeeding days after the purchase of the contracts, pork





belly futures trade at $0,5312, $0,5300, $0,5120, $0,4998, $0,4887, and $0,4880.





Compute the changes in the margin account on each of these days.





Assuming that Tri-Mark closes its position at the end of sixth day, what





is its profit/loss on its speculation ?






Sheet 2: 56

Futures & Options








Problem 56








A distributor has just purchased DM 375 000 worth of fine German beer for








the central Ohio market and must pay for the beer in 90 days. The distributor








is concerned about changes in the value of the German mark during that








period. It has accumulated the following information:








Today's spot exchange rate: So ($/DM) = 0,5019








Exchange rate available on three-month futures contract: F1,4 ($/DM) = 0,5028








Distributor's estimate of the spot exchange rate in three months: S1,4 ($/DM) = 0,5050



















Option information

Call option Put option




Contract size
DM 62,500.000 62,500.000




Exercise price
$/DM 0.5050 0.5060




Premium
$/DM 0.0010 0.0012













(a) If the distributor remains unhedged, how much will he expect to pay








in dollars for the beer ? Draw the payoff pattern.








(b) If currency futures contracts are used to hedge (each contract is for DM








125 000), how much will the distributor pay in dollars for the beer ? Draw






$ 189375
the payoff pattern for the futures contract and for the hedged position.








(c) If the distributor hedges this exposure with an option, which type of option







188550
should he use ? Assuming that the distributor's estimate of the future spot








rate is accurate, should the distributor exercise this option ? If the distributor








exercises the option, how many dollars will he pay for the beer ? Draw








the payoff pattern for the option contract and for the hedged position.








(d) Given your answers to the above questions, which is the better way to








hedge the distributor's currency risk ?









Sheet 3: 57

Option characterictics











Problem 57











A firm is thinking of purchasing a put option on the DM. The option has











an exercise price of $0,5000 and a premium of $0,05. The current spot











rate is $0,5300.











(a) Draw the payoff diagram for the option, labelling all of its parts.











(b) Is the option in or out of the money ? By how much ?











(c) What is the intrinsic value of the option ?











(d) What is the time value of the option ?






























































































































































0 1 2 3 4 5 6 7 8





-400 120 120 120 120 120 120 120




































































280,347.44 zł

112,138.97 zł


































-495,238.10 zł
-520 -297,142.86 zł












































































-185,003.88 zł






Sheet 4: 58

Call or Put Option




Problem 58




A person interested in speculating in the DM has gathered the following




information:




Today's spot exchange rate: So ($/DM) = 0,5019.




Estimate of the spot exchange rate in six months: S1/2 ($/DM) = 0,5045.











Option information
Call option Put option

Contract size DM 62.500 62.500

Exercise price $/DM 0.5050 0.5060

Premium $/DM 0.0010 0.0012






Should he buy a call option or a put option? What will the profits in dollars




be from this strategy if one DM option contract is purchased?





Sheet 5: Arkusz1


Dzień Cena akcji stopa zwrotu z akcji okres opcji Cena rozl. 350 Cena rozl. 380 Dzień DELTA (350) DELTA (380) RHO (350) RHO (380) RHO (350) RHO (380)

D1(1) D1(2) D2(1) D2(2)



Parametry














0 330.0
90 #VALUE! #VALUE! 0 0.34 0.11 0.26 0.08 0.30 0.09

-0.425905000229335 -1.24828598259905 -0.525905000229335 -1.34828598259906



Cena akcji 330













1 336.6 0.02 89 #VALUE! #VALUE! 1 0.41 0.15 0.32 0.11 0.37 0.12

-0.2309710395737 -1.057959234364 -0.330413932174875 -1.15740212696518



r - wolna od ryzyka 4.5%













2 343.2 0.019607843137255 88 #VALUE! #VALUE! 2 0.48 0.19 0.38 0.14 0.45 0.17

-0.037730563582424 -0.8694042813915 -0.136613210077033 -0.968286927886109



Odch. stand stopy zwrotu 0.2













3 349.8 0.019230769230769 87 #VALUE! #VALUE! 3 0.56 0.25 0.44 0.18 0.52 0.22

0.153955078955928 -0.682484716369177 0.055635870930911 -0.780803924394195



p = 40%













4 356.4 0.018867924528302 86 #VALUE! #VALUE! 4 0.63 0.31 0.49 0.23 0.60 0.28

0.344219445245113 -0.497069317051362 0.246466923254345 -0.59482183904213



















5 363.0 0.018518518518519 85 #VALUE! #VALUE! 5 0.70 0.38 0.55 0.28 0.67 0.34

0.533191522805268 -0.313031526741812 0.436008991224513 -0.410214058322567



WIBOR2W 4.61%













6 363.0 0 84 #VALUE! #VALUE! 6 0.70 0.38 0.54 0.27 0.67 0.34

0.534486964411124 -0.316758224476089 0.437877786103195 -0.413367402784019



+ powyżej 2%












weekend 7 363.0 0 83 #VALUE! #VALUE! 7 0.70 0.37 0.54 0.27 0.67 0.34

0.535816972744804 -0.320540845827653 0.439784570805551 -0.416573247766906



WIBOR2W+5% 6.61%













8 369.6 0.018181818181818 82 #VALUE! #VALUE! 8 0.77 0.45 0.58 0.32 0.74 0.41

0.725952718644005 -0.135610970483637 0.630500578222162 -0.23106311090548



















9 376.2 0.017857142857143 81 #VALUE! #VALUE! 9 0.82 0.52 0.62 0.38 0.79 0.48

0.915086863675855 0.048221194110824 0.820218533870804 -0.046647135694228



Cena wykonania 1 350













10 382.8 0.017543859649123 80 #VALUE! #VALUE! 10 0.87 0.59 0.65 0.43 0.84 0.55

1.10334060188084 0.23107384785211 1.00905969772263 0.136792943693904



Cena wykonania 2 380













11 389.4 0.017241379310345 79 #VALUE! #VALUE! 11 0.90 0.66 0.67 0.48 0.88 0.63

1.29083244038641 0.413062371486226 1.1971426449027 0.319372576002525



Termin opcji (w dniach) 90













12 396.0 0.016949152542373 78 #VALUE! #VALUE! 12 0.93 0.72 0.69 0.52 0.92 0.69

1.47767858837838 0.594299707975198 1.38458365475325 0.501204774350072



















13 396.0 0 77 #VALUE! #VALUE! 13 0.93 0.72 0.68 0.51 0.92 0.69

1.48529091976538 0.596194317015074 1.39279467359531 0.503698070844996


















weekend 14 396.0 0 76 #VALUE! #VALUE! 14 0.93 0.73 0.67 0.51 0.92 0.69

1.49306580520225 0.598138998325186 1.40117214685498 0.506245339977918



















15 402.6 0.016666666666667 75 #VALUE! #VALUE! 15 0.95 0.78 0.68 0.55 0.94 0.75

1.68207816112212 0.781204931307811 1.59079106820459 0.689917838390283



















16 409.2 0.016393442622951 74 #VALUE! #VALUE! 16 0.97 0.83 0.69 0.58 0.96 0.81

1.87073879911932 0.963799014364187 1.78006232906108 0.87312254430595



















17 415.8 0.016129032258065 73 #VALUE! #VALUE! 17 0.98 0.87 0.69 0.60 0.98 0.85

2.05916345778735 1.14603288590985 1.96910175054664 1.05597117866914



















18 422.4 0.015873015873016 72 #VALUE! #VALUE! 18 0.99 0.91 0.68 0.62 0.98 0.89

2.24746720505965 1.32801731506877 2.15802448595965 1.23857459596878



















19 429.0 0.015625 71 #VALUE! #VALUE! 19 0.99 0.93 0.68 0.63 0.99 0.92

2.43576478515741 1.50986253607547 2.34694536786091 1.42104311877897



















20 429.0 0 70 #VALUE! #VALUE! 20 0.99 0.94 0.67 0.62 0.99 0.92

2.45105410054358 1.51856171670103 2.36286239017476 1.43037000633221


















weekend 21 429.0 0 69 #VALUE! #VALUE! 21 0.99 0.94 0.66 0.62 0.99 0.93

2.46668938212665 1.52746411385448 2.37912987854956 1.43990461027739



















22 435.6 0.015384615384616 68 #VALUE! #VALUE! 22 1.00 0.96 0.65 0.62 0.99 0.95

2.65832766024476 1.71222152878753 2.57140496150872 1.6252988300515




23 442.2 0.015151515151515 67 #VALUE! #VALUE! 23 1.00 0.97 0.64 0.62 1.00 0.96

2.85028897556457 1.89714850092372 2.76400778152761 1.81086730688676



24 448.8 0.014925373134328 66 #VALUE! #VALUE! 24 1.00 0.98 0.64 0.62 1.00 0.98

3.04269539063619 2.08236130092618 2.95706050677842 1.99672641706841



25 455.4 0.014705882352941 65 #VALUE! #VALUE! 25 1.00 0.99 0.63 0.62 1.00 0.99

3.2356704208438 2.26797734160284 3.15068676228392 2.18299368304296



26 462.0 0.014492753623189 64 #VALUE! #VALUE! 26 1.00 0.99 0.62 0.61 1.00 0.99

3.42933942593498 2.45411554767432 3.34501202166383 2.36978814340317



27 462.0 0 63 #VALUE! #VALUE! 27 1.00 0.99 0.61 0.60 1.00 0.99

3.45429119872634 2.47135792082553 3.37062519607293 2.38769191817212


weekend 28 462.0 0 62 #VALUE! #VALUE! 28 1.00 0.99 0.60 0.59 1.00 0.99

3.47986156959912 2.48903311845735 3.39686223894587 2.40603378780409



29 458.9 -0.00661 61 #VALUE! #VALUE! 29 1.00 0.99 0.59 0.58 1.00 0.99

3.42552007542356 2.42660309455513 3.3431928151887 2.34427583432027



30 455.9 -0.006653982826483 60 #VALUE! #VALUE! 30 1.00 0.99 0.58 0.57 1.00 0.99

3.36997011739146 2.36276322690417 3.28832045929869 2.28111356881139



31 452.8 -0.006698554895721 59 #VALUE! #VALUE! 31 1.00 0.99 0.57 0.56 1.00 0.99

3.31316830144872 2.29746162406272 3.23220191610545 2.21649523871944



32 449.8 -0.006743728128794 58 #VALUE! #VALUE! 32 1.00 0.99 0.56 0.55 1.00 0.98

3.25506893198624 2.23064358243399 3.17479163479429 2.15036628524204



33 446.7 -0.006789514770533 57 #VALUE! #VALUE! 33 1.00 0.98 0.55 0.54 1.00 0.98

3.1956238459867 2.16225138027573 3.11604160341127 2.08266913770031



34 446.7 0 56 #VALUE! #VALUE! 34 1.00 0.99 0.54 0.53 1.00 0.98

3.22174099048085 2.17918281109447 3.14285992670619 2.10030174731981


weekend 35 446.7 0 55 #VALUE! #VALUE! 35 1.00 0.99 0.53 0.52 1.00 0.98

3.24858793741004 2.19659465005931 3.17041434141298 2.11842105406225



36 443.7 -0.006835927400589 54 #VALUE! #VALUE! 36 1.00 0.98 0.52 0.51 1.00 0.98

3.18764404556851 2.1259547625833 3.11018437864436 2.04849509565915



37 440.6 -0.006882978944957 53 #VALUE! #VALUE! 37 1.00 0.98 0.51 0.50 1.00 0.98

3.12521943041121 2.05356101525831 3.04848033418973 1.97682191903684



38 437.6 -0.006930682687972 52 #VALUE! #VALUE! 38 1.00 0.98 0.50 0.49 1.00 0.97

3.06125455547571 1.97934080220627 2.9852428604691 1.90332910719966



39 434.5 -0.006979052284821 51 #VALUE! #VALUE! 39 1.00 0.97 0.49 0.48 1.00 0.97

2.99568630003615 1.90321704067859 2.92040903476524 1.82793977540768



40 431.5 -0.007028101774569 50 #VALUE! #VALUE! 40 1.00 0.97 0.48 0.46 1.00 0.96

2.9284476640149 1.82510779602585 2.85391206476491 1.75057219677586



41 431.5 0 49 #VALUE! #VALUE! 41 1.00 0.97 0.47 0.46 1.00 0.96

2.95573185882226 1.84119028366722 2.881945380085 1.76740380492996


weekend 42 431.5
48 #VALUE! #VALUE! 42 1.00 0.97 0.46 0.45 1.00 0.96

2.9838896638344 1.85779812656652 2.91085998950038 1.78476845223249


















INPUTS





















cena akcji 200




















r - wolna od ryzyka 7%
















odch. standardowe stopy zwrotu akcji



0.2





Dzień Cena akcji stopa zwrotu z akcji okres opcji Cena rozl. 350 Cena rozl. 380 Dzień







p = 30%





0 291.6
90 #VALUE! #VALUE! 0















1 298.2 0.022635666546632 89 #VALUE! #VALUE! 1







WIBOR2W 5.54%





2 304.8 0.022134634344479 88 #VALUE! #VALUE! 2







dadatkowo 5%





















3 311.4 0.021655302149774 87 #VALUE! #VALUE! 3







WIBOR2W+5% 10.54%





















4 318.0 0.02119629008356 86 #VALUE! #VALUE! 4































5 324.6 0.020756332831787 85 #VALUE! #VALUE! 5







strike price A 230





















6 324.6 0 84 #VALUE! #VALUE! 6







strike price B 250




















weekend 7 324.6 0 83 #VALUE! #VALUE! 7







maturity (w dniach) 90





















8 331.2 0.020334267997343 82 #VALUE! #VALUE! 8































9 337.8 0.019929025844887 81 #VALUE! #VALUE! 9































10 344.4 0.019539620247966 80 #VALUE! #VALUE! 10































11 351.0 0.019165140677136 79 #VALUE! #VALUE! 11







dywidenda 10%





















12 357.6 0.018804745092049 78 #VALUE! #VALUE! 12







ustalenie prawa w t=15 16





















13 357.6 0 77 #VALUE! #VALUE! 13







wypłata w t=16





















weekend 14 357.6 0 76 #VALUE! #VALUE! 14































15 364.2 0.018457653620715 75 #VALUE! #VALUE! 15































16 370.8 0.018123142926067 74 #VALUE! #VALUE! 16 wys dyw


37.0775244157417


























17 401.0 0.081450961130453 73 #VALUE! #VALUE! 17































18 407.6 0.016459869022261 72 #VALUE! #VALUE! 18 payment


370.5


























19 414.2 0.01619332894873 71 #VALUE! #VALUE! 19































20 414.2 0 70 #VALUE! #VALUE! 20






























weekend 21 414.2 0 69 #VALUE! #VALUE! 21







291.575244157417




-91.5752441574167
















22 420.8 0.015935283658556 68 #VALUE! #VALUE! 22































23 427.4 0.01568533342121 67 #VALUE! #VALUE! 23































24 434.0 0.015443103198483 66 #VALUE! #VALUE! 24





Sd=200-wartość dyw/(1+rf)^dzień dyw/360
























25 440.6 0.015208240766854 65 #VALUE! #VALUE! 25































26 447.2 0.014980415008615 64 #VALUE! #VALUE! 26































27 447.2 0 63 #VALUE! #VALUE! 27






























weekend 28 447.2 0 62 #VALUE! #VALUE! 28































29 444.1 -0.006829134751755 61 #VALUE! #VALUE! 29































30 441.1 -0.006876092514099 60 #VALUE! #VALUE! 30































31 438.0 -0.006923700519411 59 #VALUE! #VALUE! 31































32 435.0 -0.006971972368117 58 #VALUE! #VALUE! 32































33 431.9 -0.007020922042597 57 #VALUE! #VALUE! 33































34 431.9 0 56 #VALUE! #VALUE! 34






























weekend 35 431.9 0 55 #VALUE! #VALUE! 35































36 428.9 -0.007070563920681 54 #VALUE! #VALUE! 36































37 425.8 -0.007120912789735 53 #VALUE! #VALUE! 37































38 422.7 -0.007171983861341 52 #VALUE! #VALUE! 38































39 419.7 -0.007223792786624 51 #VALUE! #VALUE! 39































40 416.6 -0.007276355672242 50 #VALUE! #VALUE! 40































41 416.6 0 49 #VALUE! #VALUE! 41






























weekend 42 417.6
48 #VALUE! #VALUE! 42































Sheet 6: 59

Black-Scholes Model. Put-Call Parity








Problem 59








Consider a call option on the stock of Arkla Natural Gas. The stock currently








trades for $22,75 per share. The option has one month to expiration and an








exercise price of $20,00. The riskless interest rate is 5% (annually) and the variance








is 0,45.








(a) What is the value of the call option?








(b) The price exceeds $2,75. Why?








(c) Suppose the risk-free rate was 7% instead of 5%. Find the option's value








Is this result consistent with your expectation ?













































#VALUE!






































-90 110



































10.00 zł



























2.9999999985































42








84






























26.6666666666667

Sheet 7: 60

Swap terminology






Problem 60






Gettman Inc., a manufacturer of sports footwear, recently negotiated






a ten-year, $5 million bank loan with Texas Commerce Bank (TCB). The loan






requires semiannual payments based on a floating-rate index of six-month






LIBOR + 1%. Furthermore, the loan contains a covenant stipulating that






Gettman should hedge within the next 60 days, to the degree possible,






the interest rate risk in the loan. The CFO of Gettman decides to achive this






objective by entering into an interest swap, where the firm will receive floating






and pay fixed. The swap dealer quotes ten year swaps at "80-87". The current






ten-year Treasury bond yield is 7%.






(a) What is the percentage coupon (as a function of LIBOR, on a 365-day






basis) received by TCB on this loan?






(b) What is the fixed rate paid by Gettman Inc. to the dealer?






(c) What is the floating rate paid by the dealer to the firm?






(d) What is the net interest cost for Gettman on its borrowed funds?






(e) Can you offer a plausible reason why TCB may want the firm to hedge the






interest rate risk when presumably the bank itself could have provided a






fixed-rate loan to the firm?







Sheet 8: 61

Swap. Economic value











Problem 61











Consider a five-year, semiannual settlement, $100 million notional principal











8%-versus-LIBOR interest rate swap between Firm X (the fixed payer) and











Firm Y (the fixed receiver). Also suppose that just after the sixth payment (i.e.,











after three years), Firm X falls into financial troubles and files for Chapter 7.
























(a) What is the loss per period to Firm Y if the market today offers swaps for a











fixed rate 7,2% against LIBOR flat?











(b) What is the economic value of the swap?











(c) If instead the market today offers swaps for a fixed rate of 8,4% against the











LIBOR, what is the loss to Firm Y? What is the economic value of the swap











in this case?













































722,570.16 zł












































-200000







#VALUE! ex 72





































































8000000
7200000
























4400000 because we are calculating it per period





Wyszukiwarka

Podobne podstrony:
Zadanie nr1 Nowakowski
ćw 8 Teoria Sterowania modele obiektów sterowania w przestrzeni stanów (rozdział III TS w zadaniach
bd-zadania praktyczne-Notatek.pl, Marzena Nowakowska
Zadania z treścia
Prezentacja 2 analiza akcji zadania dla studentow
Przedmiot i zadania dydaktyki 4
zadanie 1 v 002
Przedmiot dzialy i zadania kryminologii oraz metody badan kr
KOLOKWIUM 2 zadanie wg Adamczewskiego na porownawczą 97
CELE I ZADANIA EDUKACJI MEDIALNEJ(1)
ochrona atmosfery zadania
zadania
Przedmiot i zadania dydaktyki 2
Wymogi, cechy i zadania sprawozdawczośći finansowej
ZADANIA PiP Prezentacja Microsoft PowerPoint
1F CWICZENIE zadanie wg Adamczewskiego na porownawczą 97id 18959 ppt
zadania i rozwiazania z przekrojów 2

więcej podobnych podstron