05 Optional Fractional Binary Numbers

background image

University  of  Washington  

Sec.on  2:  Integer  &  Floa.ng  Point  Numbers  

¢

Representa.on  of  integers:  unsigned  and  signed  

¢

Unsigned  and  signed  integers  in  C  

¢

Arithme.c  and  shiBing  

¢

Sign  extension  

¢

Background:  frac.onal  binary  numbers  

¢

IEEE  floa.ng-­‐point  standard  

¢

Floa.ng-­‐point  opera.ons  and  rounding  

¢

Floa.ng-­‐point  in  C  

 

Frac.onal  Values  

background image

University  of  Washington  

Frac.onal  Binary  Numbers  

¢

What  is  1011.101

2

?  

¢

How  do  we  interpret  frac.onal  decimal  numbers?  

§

e.g.  107.95

10  

§

Can  we  interpret  frac9onal  binary  numbers  in  an  analogous  way?  

Frac.onal  Values  

background image

University  of  Washington  

• •

b

–1

.

Frac.onal  Binary  Numbers  

Frac.onal  Values  

¢

Representa.on  

§

Bits  to  right  of  “binary  point”  represent  frac9onal  powers  of  2  

§

Represents  ra9onal  number:  

b

i

b

i–1

b

2

b

1

b

0

b

–2

b

–3

b

j

• • •

• • •

1

2

4

2

i–1

2

i

• • •

1/2

1/4
1/8

2

j

b

k

⋅2

k

k =− j

i

background image

University  of  Washington  

Frac.onal  Binary  Numbers:  Examples  

¢

Value

 Representa.on  

§

5  and  3/4    

§

2  and  7/8    

§

63/64

   

¢

Observa.ons  

§

Divide  by  2  by  shiMing  right  

§

Mul9ply  by  2  by  shiMing  leM  

§

Numbers  of  the  form  0.111111…

2

 are  just  below  1.0  

§ 

1/2  +  1/4  +  1/8  +  …  +  1/2

i

 +  …  →  1.0  

§ 

Shorthand  nota9on  for  all  1  bits  to  the  right  of  binary  point:  

1.0  –  

ε

 

Frac.onal  Values  

101.11

2

10.111

2

0.111111

2

background image

University  of  Washington  

Representable  Values  

¢

Limita.ons  of  frac.onal  binary  numbers:  

§

Can  only  exactly  represent  numbers  that  can  be  wriWen  as  

x  *  2

y  

§

Other  ra9onal  numbers  have  repea9ng  bit  representa9ons  

¢

Value

 Representa.on  

§

1/3

 0.0101010101[01]…

2

§

1/5

 0.001100110011[0011]…

2

§

1/10

 0.0001100110011[0011]…

2

Frac.onal  Values  

background image

University  of  Washington  

Fixed  Point  Representa.on  

¢

We  might  try  represen.ng  frac.onal  binary  numbers  by  

picking  a  fixed  place  for  an  implied  binary  point  

§

“fixed  point  binary  numbers”  

¢

Let's  do  that,  using  8-­‐bit  fixed  point  numbers  as  an  example  

§

#1:  the  binary  point  is  between  bits  2  and  3  

       b

7

 b

6

 b

5  

b

4

 b

3

   [.]  b

2

 b

1

 b

0  

§

#2:  the  binary  point  is  between  bits  4  and  5  

       b

7

 b

6

 b

5

 [.]  b

4

 b

3

 b

2

 b

1

 b

0  

¢

The  posi.on  of  the  binary  point  affects  the  range  and  

precision  of  the  representa.on  

§

range:  difference  between  largest  and  smallest  numbers  possible  

§

precision:  smallest  possible  difference  between  any  two  numbers  

Frac.onal  Values  

background image

University  of  Washington  

Fixed  Point  Pros  and  Cons  

¢

Pros  

§

It's  simple.    The  same  hardware  that  does  integer  arithme9c  can  do  

fixed  point  arithme9c  

§ 

In  fact,  the  programmer  can  use  ints  with  an  implicit  fixed  point  

§ 

ints  are  just  fixed  point  numbers  with  the  binary  point    

to  the  right  of  b

0  

¢

Cons  

§

There  is  no  good  way  to  pick  where  the  fixed  point  should  be  

§ 

Some9mes  you  need  range,  some9mes  you  need  precision  –  the  

more  you  have  of  one,  the  less  of  the  other.    

Frac.onal  Values  


Wyszukiwarka

Podobne podstrony:
05 Optional Fractional Binary Numbers
24 Hardware Random Binary Number Generator
24 Hardware Random Binary Number Generator
M3E Fraction numbers Connect 4
Year 3 Summer Block 1 Number Fractions
podrecznik 2 18 03 05
regul praw stan wyjątk 05
05 Badanie diagnostyczneid 5649 ppt
Podstawy zarządzania wykład rozdział 05
05 Odwzorowanie podstawowych obiektów rysunkowych
05 Instrukcje warunkoweid 5533 ppt
05 K5Z7
05 GEOLOGIA jezior iatr morza
05 IG 4id 5703 ppt
05 xml domid 5979 ppt
Świecie 14 05 2005
Wykł 05 Ruch drgający

więcej podobnych podstron