background image

Abstract 

 

SCHIRACK, ANDRIANA VAIS.  The Effect of Microwave Blanching on the Flavor 
Attributes of Peanuts.  (Under the direction of K.P. Sandeep.) 

 

The use of microwave technology as an alternative blanching method for 

peanuts could potentially reduce energy costs and processing time, and lead to 

products with better nutrient retention.  However, an off-flavor was found in peanuts 

which were microwave-blanched at high temperatures.  As a result, the objective of 

this research has been to determine the impact of different microwave blanching 

parameters on the properties of roasted peanuts, and to characterize the off-flavor 

observed during high-temperature microwave blanching using a descriptive sensory 

panel and analysis of volatile flavor compounds.  The processing parameters best 

suited for microwave blanching of peanuts were determined based on energy 

absorbed during processing, internal and surface temperatures, loss in moisture 

content, and blanchability. The best blanchability resulted from higher process 

temperatures and lower final moisture content.  However, peanuts which reached 

the highest internal temperatures during blanching also developed an off-flavor, 

which was characterized by increased intensities of stale/floral and burnt/ashy notes.  

Solvent extraction / solvent assisted flavor evaporation (SAFE), gas 

chromatography-olfactometry (GC/O), gas chromatography-mass spectrometry 

(GC/MS), aroma extract dilution analysis (AEDA), threshold testing, and model 

systems were used to examine the chemical compounds which may be responsible 

for this microwave-related off-flavor.  Analysis revealed an increased formation of 

guaiacol, phenylacetaldehyde, and 2,6-dimethylpyrazine in the off-flavored peanuts 

as compared to a process control, which led to the burnt and stale/floral 

background image

 

characteristics noted by descriptive sensory panel.  These compounds were only a 

small fraction of over 200 aroma-active compounds which were found to contribute 

to roasted peanut flavor using GC/O.  This research illustrates the importance of the 

relative concentrations of the many aroma-active compounds found in peanuts.  

These findings could aid in training sensory panels to evaluate processing-related 

off-flavors, because guaiacol and phenylacetaldehyde could be used as chemical 

standards to define the burnt/ashy and stale/floral off-flavors which can occur during 

high temperature processing. Through this project, it was determined that it is 

possible to achieve acceptable blanchability in peanuts using microwave blanching 

while minimizing the possibility of an off-flavor.   

background image
background image

ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my husband, Pete 

background image

iii 

BIOGRAPHY 

Andriana Schirack is originally from Columbus, Ohio, where she attended 

Ohio State University as an OSU Medalist Scholar and National Merit Scholar.  

Andriana graduated with a B.S. in Food Science in December, 1997 after completing 

an internship in product development of infant formula with Ross Laboratories.  In 

2000, Andriana completed a master’s program in Food Science at North Carolina 

State University with a minor in statistics.  During this time, she was also employed 

as an aseptic processing technician in the dairy plant.  From 2000 to 2003, Andriana 

was an Assistant Food Scientist at Jim Beam Brands in Clermont, Kentucky, where 

she was trained in analytical chemistry for technical problem solving and developed 

new beverages for global launch as part of the product development team.  She 

began her Ph.D. program in the summer of 2003 under the direction of Dr. K.P. 

Sandeep, and has been very active in the national IFT Student Association and the 

NCSU Food Science Club.  Andriana and her husband, Pete, will move to 

Minneapolis, MN where she will begin work at General Mills as an R&D Scientist. 

background image

iv 

ACKNOWLEDGMENTS 

Thanks to my advisor, Dr. K.P. Sandeep, and my committee members, Dr. 

MaryAnne Drake, Dr. Tim Sanders, and Dr. Donn Ward for their guidance.  Also, 

thanks to the many family and friends who have supported me in the past several 

years.  Most of all, a huge thanks to my husband, Pete – for making this possible. 

background image

 

v

TABLE OF CONTENTS 

 

Page 

 
List of Tables ......................................................................................................viii 
List of Figures ....................................................................................................... x 
 
Chapter 1.  Introduction ........................................................................................ 1 
 
        References.................................................................................................... 7 
 
Chapter 2.  Literature Review ............................................................................. 10 
 
        Composition of Peanuts .............................................................................. 11 
        Overview of Peanut Production................................................................... 12 
        Harvesting................................................................................................... 13 
        Curing ......................................................................................................... 14 
        Effect of Peanut Immaturity......................................................................... 18 
        Storage   ..................................................................................................... 20 
        Blanching .................................................................................................... 21 
        Roasting...................................................................................................... 26 
        Microwave Processing ................................................................................ 28 
        Mechanisms of Action ................................................................................. 30 
        Dielectric Properties .................................................................................... 32 
        Microwave Blanching of Peanuts ................................................................ 35 
        Flavor Chemistry of Peanuts....................................................................... 36 
        Flavor Production During Roasting ............................................................. 37 
        Roasting Parameters Effect on Flavor ........................................................ 43 
        Flavor Research in Other Nuts.................................................................... 45 
        Precursors to Roasted Notes ...................................................................... 46 
        Off-flavors in Peanuts ................................................................................. 47 
        Flavors Due to Lipid Oxidation .................................................................... 48 
        Off-flavors Due to Anaerobic Respiration.................................................... 52 
        Fruity Fermented Off-flavor ......................................................................... 55 
        Off-flavors Due to External Contamination.................................................. 57 
        Dark Soured Aromatic Off-flavor ................................................................. 57 
        Methods of Flavor Analysis ......................................................................... 58 
        Gas Chromatography-Mass Spectrometry (GC-MS) .................................. 64 
        Correlation to Quality and Sensory ............................................................. 65 
        Gas Chromatography – Olfactometry (GC-O)............................................. 66 
        GC-O Applications ...................................................................................... 69 
        Sensory Evaluation ..................................................................................... 70 
        Descriptive Sensory Analysis...................................................................... 74 
        Project Objectives ....................................................................................... 76 
        Abbreviations .............................................................................................. 78 
        Symbols ...................................................................................................... 80 

background image

 

vi

        References.................................................................................................. 81 
 
 
Chapter 3.  Effect of Processing Parameters on the Temperature and  
Moisture Content of Microwave-Blanched Peanuts ............................................ 90 
 
        Abstract....................................................................................................... 91 
        Introduction ................................................................................................ 91 
        Materials and Methods................................................................................ 94 
        Results and Discussion............................................................................... 97 
            Energy Absorption .................................................................................. 97 
            Peanut Temperature ............................................................................... 98 
            Change in Moisture Content ................................................................. 101 
            Blanchability.......................................................................................... 102 
        Conclusions .............................................................................................. 104 
        Acknowledgments..................................................................................... 105 
        Abbreviations ............................................................................................ 106 
        References................................................................................................ 107 
        Tables and Figures ................................................................................... 109 
 
Chapter 4.  Impact of Microwave Blanching on the Flavor of Roasted  
Peanuts............................................................................................................. 118 
 
        Abstract..................................................................................................... 119 
        Introduction ............................................................................................... 120 
        Materials and Methods.............................................................................. 123 
            Peanuts................................................................................................. 123 
            Processing Experiments ....................................................................... 123 
            Temperature Measurement During Blanching ...................................... 124 
            Moisture Content Analysis .................................................................... 125 
            Sensory Evaluation ............................................................................... 125 
            Data Analysis ........................................................................................ 126 
        Results and Discussion............................................................................. 127 
            Sensory Analysis .................................................................................. 127 
            Temperature Profiles and Change in Moisture Content ....................... 128 
        Conclusions .............................................................................................. 130 
        Abbreviations ............................................................................................ 130 
        Acknowledgments..................................................................................... 131 
        References................................................................................................ 132 
        Table Legends .......................................................................................... 135 
 
Chapter 5.  Characterization of Aroma-Active Compounds in Microwave  
Blanched Peanuts............................................................................................. 141 
 
        Abstract..................................................................................................... 142 
        Introduction ............................................................................................... 143 

background image

 

vii

        Materials and Methods.............................................................................. 145 
            Peanuts................................................................................................. 145 
            Chemicals ............................................................................................. 147 
            Static Headspace Gas Chromatography............................................... 147 
            Solvent Extraction with Solvent Assisted Flavor Evaporation (SAFE)... 148 
            Gas Chromatography/Olfactometry (GC/O) .......................................... 149 
            Gas Chromatography/Mass Spectrometry (GC/MS)............................. 150 
            Identification of Odorants ...................................................................... 151 
            Quantification of Odorants .................................................................... 151 
            Threshold Testing ................................................................................. 152 
            Sensory Evaluation of Peanut Models .................................................. 153 
        Results and Discussion............................................................................. 154 
            Sensory analysis................................................................................... 154 
            Static Headspace Analysis.................................................................... 155 
            Gas Chromatography-Olfactometry ...................................................... 156 
            Quantification ........................................................................................ 159 
            Threshold Determination....................................................................... 160 
            Model Systems ..................................................................................... 163 
        Conclusion ................................................................................................ 165 
        Acknowledgments..................................................................................... 165 
        References................................................................................................ 167 
 
Chapter 6.  Conclusions and Future Work ........................................................ 178 
 
        Conclusions .............................................................................................. 179 
        Future Work .............................................................................................. 182 
        References................................................................................................ 184 
 
Appendices ....................................................................................................... 185 
 
        Appendix 1:  Analysis of Peanut Volatiles by Solvent Extraction, SAFE,  
        GC-O, and GC-MS.................................................................................... 186 
        Appendix 2:  Quantification of Peanut Volatiles ........................................ 192 
        Appendix 3:  Summary of Aroma-Active Compounds Found in  
        Peanut Samples Using Aroma Extract Dilution Analysis (AEDA).............. 194 
 

 

 

background image

 

viii

LIST OF TABLES 

Chapter 2 
 
Table 1 

Peanut Volatile Analysis by Gas Chromatography .......................... 63 

 
Table 2 

Lexicon of Peanut Flavor Descriptors (Johnsen et al., 1988) .......... 72 

 
 
Chapter 3 
 
Table 1 

Processing Parameters During Microwave Blanching of  
Peanuts ....................................................................................... 109 
 

Table 2 

Means by Treatment of Internal Temperatures of Peanuts  

 During 

Microwave 

Blanching ....................................................... 109 

 
Table 3 

Maximum Internal Temperatures of Peanuts by Treatment  

 During 

Microwave 

Blanching ....................................................... 110 

 
 
Chapter 4 
 
Table 1 

 Microwave Application Parameters and Resulting Blanching  

  

Efficiency ....................................................................................... 136 

 
Table 2 

Lexicon of Peanut Flavor Descriptors (Modified From Johnsen  

 

 et al., 1988; and Sanders et al., 1989) .......................................... 137 

 
Table 3 

Means Separation of Blanching Treatments by Sensory  

 Attribute......................................................................................... 138 
 
Table 4 

Correlations Between Peanut Flavor Attributes............................. 139 

 
Table 5 

Maximum Internal Temperature in Peanuts by Treatment ............ 140 

 
Table 6 

Moisture Content of Peanuts After Blanching................................ 140 

 
 
Chapter 5 
 
Table 1 

Effect of High Temperature Microwave Blanching on Sensory  

 Attributes ..................................................................................... 172 
 
Table 2 

Model System Concentrations in Reference Peanut Paste……...173 

 

background image

 

ix

Table 3 

High Impact Aroma-Active Compounds in Peanuts as  

 Determined 

by AEDA .................................................................. 174 

 
Table 4 

Relative Abundance of Selected High Aroma Impact  

 Compounds 

in 

Peanuts ............................................................... 176 

 
Table 5 

Quantification, Sensory Orthonasal Threshold Values, and Odor  
Activity Values of Selected Compounds in Peanuts .................... 177 

 
Appendices 
 
Table 1 

Aroma Active Compounds in Reference Peanuts Detected by  

 Gas 

Chromatography-Olfactometry............................................. 194 

 
Table 2 

Aroma-Active Compounds in Microwave-Blanched Peanuts  

 

Detected by Gas Chromatography-Olfactometry......................... 201 

background image

 

x

LIST OF FIGURES 

 

 

         

 

 

 

 

 

Page 

Chapter 3 
 
Figure 1 

Mean Energy Absorbed by Peanuts Per Treatment for All  

 

Replicates During Microwave Heating for 4, 5, 8, or 11  

 Minutes 

(Set 1) ............................................................................ 111 

 
Figure 2 

Internal and Surface Temperatures of Peanuts During  

 

Microwave Blanching for 11 Minutes With and Without Using  

 Fan 

(Set 1) .................................................................................. 112 

 
Figure 3 

Internal and Surface Temperatures of Peanuts of 5 and 11%  

 

Initial Moisture Content (MC) During Microwave Blanching for  

 

11 Minutes Without Using a Fan (Set 2)...................................... 113 

 
Figure 4 

Relationship Between Maximum Internal Temperature and Final 
Moisture Content of Peanuts After Microwave Blanching  

 (Correlation 

R

= 0.87).  F= Fan Used During Blanching,  

 

NF = No Fan Used,  MC = Moisture Content............................... 114 

 
Figure 5 

Mean of Blanchability Results Per Treatment for All Replicates  

 

During Microwave Blanching of Peanuts for 4, 5, 8, or 11  

 Minutes 

(Set 1) ............................................................................ 115 

 
Figure 6 

Mean of Blanchability Results Per Treatment for All Replicates  

 

During Microwave Blanching of Peanuts for 11 Minutes  

 

Without Using a Fan (Set 2) ........................................................ 116 

 
Figure 7 

Relationship Between Maximum Internal Temperature and 
Blanchability of Peanuts After Microwave Blanching  

 (Correlation 

R

2

 = 0.81).  The Average Final Moisture Content  

 

(MC) of Each Treatment is Noted ................................................ 117 

 
 
 

background image

 

1

 

 

 

 

 

 

 

 

 

CHAPTER 1:  INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

background image

 

2

        Peanuts are a valuable agricultural crop in the United States, specifically in 

Virginia, the Carolinas, and in the Southeast and Southwest regions.  The annual 

production of peanuts in the United States reached 4.2 billion pounds in 2004 

(NASS, 2005).  Peanuts are valuable nutritionally due to their high protein content 

and the amount of unsaturated fats.  The most common use of peanuts worldwide is 

crushing for oil and meal.  The oil is used for cooking and as a salad oil, while the 

defatted meal is processed into protein concentrates and isolates.  In the United 

States, a majority of the domestic peanut crop is used for products such as peanut 

butter, and it also serves as a versatile ingredient in confections. 

When peanuts are roasted, they obtain a unique flavor which drives product 

marketing in the peanut industry.  This flavor is the result of genetics, handling, 

storage, and processing factors (Sanders et al., 1995).  As a result, there is an 

interest in the effects of harvesting and processing techniques on peanut flavor 

(Singleton and Pattee, 1991; Singleton and Pattee, 1992; Osborn et al., 1996; Baker 

et al.

, 2003; Didzbalis et al., 2004). 

The processing of peanuts includes several steps from harvesting to final 

product.  Handling of the peanut crop starts with digging, shaking off soil and debris, 

drying the peanuts from 35 - 40% moisture content to 15 - 20%, combining to 

separate the pods from the plants, transport to storage facilities, removing the hulls, 

and blanching to remove the seed coat from the kernels (Ory et al., 1992). After 

blanching, most of the peanuts are roasted for use in peanut butter, confections, or 

other snack foods.    

background image

 

3

The processing parameters used during blanching can have significant 

impacts on the final product quality.  The process of peanut blanching consists of an 

application of heat followed by abrasive removal of the seed coat.  This step is done 

for several reasons. Blanching results in the removal of the seed coat which contains 

tannins that contribute off-flavors and off-colors.  Blanching is also used to remove 

foreign material and dust (St. Angelo et al., 1977). It also reduces enzyme activity 

and moisture content, which are factors impacting subsequent quality (Adelsberg 

and Sanders, 1997). Furthermore, blanching aids in the electronic color-sorter 

removal of damaged or discolored seeds, which are associated with aflatoxin 

contamination (Sanders et al., 1999).   

Several methods are used for blanching: dry-blanching, spin-blanching, 

water-blanching, alkali-blanching, and hydrogen peroxide-blanching. In general, the 

most common method in industrial processing is dry-blanching.  In this process, 

peanuts are placed on conveyor belts and moved through large hot-air ovens in 

which the direction of airflow is alternated in successive zones (Adelsberg and 

Sanders, 1997).  The peanuts are heated in sequential zones from 30 °C to 90 °C, 

with a total processing time of approximately 45 minutes.  During this time, moisture 

is removed from the peanuts, the seed coat is loosened, and after cooling, the seed 

coats are mechanically removed (Sanders et al., 1999). Paulsen and Brusewitz 

(1976) suggested that the mechanism of blanching is due to differences in thermal 

expansion and subsequent contraction of the seed and seed coat, resulting in a 

loosening of the seed coat.   

background image

 

4

Microwave processing has been investigated as an alternative to traditional 

processing methods due to the speed of operation, energy savings, and efficient 

process control (Giese, 1992).  Since heating takes place only in the food material 

and not in the surrounding medium, microwave processing can reduce energy costs.  

Shorter heating times also lead to greater nutrient retention, better quality 

characteristics such as texture and flavor, as well as increased production (Giese, 

1992).  The use of a continuous microwave system for blanching has been proposed 

as a means of reducing production time and energy costs during peanut processing.  

Previous studies at North Carolina State University have shown promise for the use 

of an industrial microwave system.  Peanuts were effectively blanched by the 

microwave when the peanuts reached temperatures over 85 °C and final moisture 

contents of 6% or lower.  In a study using a series of individual trays of peanuts 

passing through the microwave field, Rausch et al. (2005) examined the potential 

use of microwaves for peanut blanching.  In the current study, refinement of the 

microwave applicator has allowed a solid bed of peanuts to be exposed to 

microwave energy in a continuous process, using a processing technique similar to 

that of Boldor et al. (2005).   

The best blanching efficiencies result from peanuts which are subjected to the 

highest temperatures during blanching and lose the most moisture.  Moisture 

content affects blanchability as well as stability and flavor quality of peanuts 

(Adelsberg and Sanders, 1997; Katz, 2002).  However, high temperature processing 

has been tied to the formation of off-flavors. For example, elevated temperatures are 

used during curing, in which the moisture content of the peanuts after digging is 

background image

 

5

reduced from 35-40% moisture to 8-10% to prevent quality losses before further 

processing. It has been documented that curing peanuts at temperatures above  

35 °C is related to the formation of anaerobic by-products which produce an off-

flavor.  Also, with increased curing temperatures above 35 °C, positive attributes 

such as roasted peanutty decrease while off-flavors such as fruity/fermented 

increase in intensity (Sanders et al., 1990).  This decrease in positive flavor attribute 

intensity with increase in temperature has also been observed in dry-blanching 

(Sanders et al., 1999).  

Such changes in the quality and flavor of peanuts have been described 

previously using descriptive sensory analysis.   Peanuts were first evaluated using a 

method called the Critical Laboratory Evaluation of Roasted Peanuts, or CLER 

(Holaday, 1971).  Later, sensory lexicons for peanuts and peanut products were 

constructed by Oupadissakoon and Young (1984) and Syarief et al. (1985).  A 

standardized lexicon was subsequently developed to address deficiencies in earlier 

models such as lack of differentiation of oxidized off-flavors and lack of 

sweet/caramel descriptors (Johnsen et al., 1988).  The lexicon used in this research 

incorporates a ten point scale to rate intensity of flavor attributes using commercially 

available products as references (Sanders et al., 1989). 

Using descriptive sensory analysis, a processing-related off-flavor has been 

noted in peanuts undergoing high-temperature microwave blanching (Katz, 2002).  

The chemical cause of this off-flavor is not yet known.  In other studies, specific 

volatile compounds identified by GC-mass spectrometry have been linked to sensory 

attributes in peanuts (Young and Hovis, 1990; Vercellotti et al., 1992). Instrumental 

background image

 

6

techniques can be used to analyze the volatile compounds which affect peanut 

flavor, although these compounds are present at very low concentrations and can 

interact with other components of the food matrix, leading to difficulties in their 

extraction (Reineccius, 2002).  A variety of extraction and isolation techniques have 

been applied in peanut flavor research, including solvent extraction and high vacuum 

distillation (Didzbalis et al., 2004), static headspace (Young and Hovis, 1990), and 

dynamic headspace (Crippen et al, 1992). Other off-flavors which have been 

documented in peanuts, such as fruity fermented, have been linked to their 

causative chemical compounds (Didzbalis et al., 2004).  By identifying the 

compounds responsible for an off-flavor, the possible causes, such as anaerobic 

respiration, lipid oxidation, or enzymatic activity, may be determined and the off-

flavor itself can possibly be prevented. 

The use of microwave technology for blanching peanuts can result in a large 

reduction in processing time, subsequent cost savings, and better product quality.  

The objective of this study was to characterize the impact of different microwave 

blanching parameters on the quality and flavor of roasted peanuts, and to identify 

the chemical components responsible for the off-flavor caused by high-temperature 

microwave blanching.  Microwave blanching is an alternative processing method 

which holds the promise of better product quality and more efficient process control, 

if properly implemented.  However, the occurrence of an off-flavor in the final product 

may be problematic in the adoption of this method.  The identification of the 

chemical compounds causing this off-flavor could ultimately aid in the development 

of an alternative blanching method for peanuts using microwave technology. 

background image

 

7

REFERENCES 

Adelsberg GD, Sanders TH.  1997.  Effect of peanut blanching protocols on bed  
   and seed temperatures, seed moisture, and blanchability.  Peanut Science 24:   
   42-46. 
 
Baker GL, Cornell JA, Gorbet DW, O'Keefe SF, Sims CA, Talcott ST. 2003.   
   Determination of pyrazine and flavor variations in peanut genotypes during  
   roasting.  J. Food Sci. 68(1): 394-400. 
 
Boldor D, Sanders TH, Swartzel KR, Farkas, BE.  2005.  A model for  
   temperature and moisture distribution during continuous microwave drying.   
   Journal of Food Process Engineering 28(1): 68-87. 
 
Crippen KL, Vercellotti JR, Lovegren NV, Sanders TH. 1992. Defining roasted  
   peanut flavor quality. Part 2. Correlation of GC volatiles and sensory flavor  
   attributes. In: Charalambous G, editor. Food Science and Human Nutrition.  
   New York:  Elsevier Science Publishers.  p 211-227. 
 
Didzbalis J, Ritter KA, Trail, AC, Plog FJ.  2004.  Identification of fruity/fermented  
   odorants in high temperature cured roasted peanuts. J. Agric. Food Chem. 52:  
   4828-4833. 
 
Giese J.  1992.  Advances in microwave food processing.  Food Technology  
   46(9): 118-123. 
 
Holaday CE.  1971.  Report of the peanut quality committee.  Journal of  
   American Peanut Research and Education Association 3: 238-241. 
 
Johnsen PB, Civille GV, Vercellotti JR, Sanders TH, Dus CA.  1988.  
   Development of a lexicon for the description of peanut flavor.  Journal of  
   Sensory Studies 3: 9-17. 
 
Katz TA.  2002. The effect of microwave energy on roast quality of microwave  
   blanched peanuts. Master's Thesis, North Carolina State University, Raleigh,  
   NC. 
 
NASS.  2005.  USDA crop production 2004 summary.  Washington, DC:   
   National Agriculture Statistics Service. 
 
Ory RL, Crippen KL, Lovegren NV.  1992.  Off-flavors in peanuts and peanut  
   products. In: Charalambous G, editor.  Developments in Food Science v. 29:  
   Off-Flavors in Foods and Beverages. Amsterdam, The Netherlands: Elsevier  
   Science Publishers. p 57-75. 
 
Osborn GS, Young JH, Singleton JA.  1996.  Measuring the kinetics of  

background image

 

8

   acetaldehyde, ethanol, and ethyl acetate within peanut kernels during high  
   temperature drying. Transactions of the ASAE 39(3): 1039-1045. 
 
Oupadissakoon C, Young CT.  1984.  Modeling of roasted peanut flavor for some  
   Virginia type peanuts from amino acid and sugar contents.  J. Food Sci. 49: 52- 
   58. 
 
Paulsen MR, Brusewitz GH.  1976.  Coefficient of cubical thermal expansion for  
   Spanish peanut kernels and skins.  Transactions of the ASAE 19(3): 592-595,  
   600. 
 
Rausch TD, Sanders TH, Hendrix KW, Drozd JM.  2005.  Effect of microwave  
   energy on blanchability and shelf life of peanuts.  J. Agric. Food Chem.,  
   submitted. 
 
Reineccius, G.  2002.  Instrumental methods of analysis.  In:  Taylor AJ, editor.   
   Food Flavor Technology.  Sheffield, England:  Sheffield Academic Press. p  
   210-251. 
 
St. Angelo AJ, Kuck JC, Hensarling TP, Ory RL.  1977.  Effects of water and spin  
   blanching on oxidative stability of peanuts.  Journal of Food Processing and  
   Preservation 1: 249-260. 
 
Sanders TH, Adelsberg GD, Hendrix KW, McMichael Jr. RW.  1999.  Effect of   
   blanching on peanut shelf-life.  Peanut Science 26: 8-13. 
 
Sanders TH, Blankenship PD, Vercellotti JR, Crippen KL.  1990.  Interaction of  
   curing temperature and inherent maturity distributions on descriptive flavor of  
   commercial grade sizes of Florunner peanuts.  Peanut Science 17: 85-89. 
 
Sanders TH, Pattee HE, Vercellotti JR, Bett KL.  1995. Advances in peanut flavor  
   quality. In: Pattee HE, Stalker HT, editors. Advances in Peanut Science.   
   Stilwater, OK: American Peanut Research and Education Society, Inc. p 528- 
   553. 
 
Sanders TH, Vercellotti JR, Blankenship PD, Crippen KL, Civille GV.  1989.   
   Interaction of maturity and curing temperature on descriptive flavor of peanuts.   
   J. Food Sci. 54(4): 1066-1069. 
 
Singleton JA, Pattee HE.  1991.  Peanut moisture/size, relation to freeze damage  
   and effect of drying temperature on volatiles.  J. Food Sci. 56(2):  579-581. 
 
Singleton JA, Pattee HE.  1992.  Maturity and storage affect freeze damage in  
   peanuts.  J. Food Sci. 57(6): 1382-1384. 
 
Syarief H, Hamann DD, Giesbrecht FG, Young CT, Monroe RJ.  1985.   

background image

 

9

   Interdependency and underlying dimensions of sensory flavor of selected  
   foods.  J. Food Sci. 50: 631-638. 
 
Vercellotti JR, Crippen KL, Lovegren NV, Sanders TH.  1992.  Defining roasted  
   peanut flavor quality. Part 1. Correlation of GC volatiles with roast color as an   
   estimate of quality. In: Charalambous G, editor.  Developments in Food  
   Science v. 29: Food Science and Human Nutrition.  Amsterdam, The  
   Netherlands: Elsevier Science Publishers. p 183-206.       

  

 

 

background image

 

10

 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 2: 

LITERATURE REVIEW 

background image

 

11

Composition of Peanuts 

    

The structure of a peanut seed consists of two cotyledons and a germ, which 

is enveloped in a thin skin called the testa. The peanut heart contains bitter material 

and as a result is often removed during processing, while the testa is removed 

during blanching.  The testa contains mainly protein, fiber and carbohydrates, as 

well as tannins which give the skin a bitter flavor (Hoffpauir, 1953). 

    

Within each year, the composition and quality of the peanut crop changes due 

to climatic variations as well as different harvesting and handling techniques (Pattee 

et al.

, 1990).  Peanut seeds consist of approximately 50% fat and 30% protein 

(Hoffpauir, 1953).  The main fatty acids found in peanuts include palmitic, oleic, and 

linoleic acids. Up to 6% of peanut oil consists of long chain saturated fatty acids 

such as arachidic acid (20:0), behenic acid (22:0), lignoceric acid (24:0), oleic acid 

(18:1), and linoleic acid --18:2 (Chung et al., 1993).  A large percentage of peanut oil 

consists of polyunsaturated fatty acids, which are a substrate for oxidation by 

lipoxygenase (Ory et al., 1992, St. Angelo, 1996).  Ahmed and Young (1982) 

indicated that the oleic/linoleic acid ratios in the peanut varied with cultivar, growing 

location, maturity, as well as temperatures during the last few weeks of harvest.  

This oleic/linoleic acid ratio has been positively correlated to oil stability.   

    

The protein in peanuts includes albumins, and two globulins, arachin and 

conarachin.  The total protein has a high digestibility coefficient and has significant 

amounts of 10 essential amino acids (Hoffpauir, 1953).  The specific amino acid 

content of peanuts varies depending on the type of peanut, cultivar, location, and 

background image

 

12

maturity, because the concentrations of free amino acids decrease as the peanut 

matures (Basha and Young, 1996; Ahmed and Young, 1982).   

    

While in general, plants possess naturally occurring antioxidants such as 

superoxide dismutase, tocopherols, carotenes, and ascorbic acid, oilseeds are 

specifically identified with peroxidases and catalase.  Peroxidase and catalase 

function by aiding the conversion of hydrogen peroxide to water and oxygen, and 

thereby help eliminate this precursor to free radical species (Sanders et al., 1993).  

Peanut oil also contains antioxidants such as α, γ, and δ tocopherols (Hoffpauir, 

1953). 

    

The other components in peanuts include carbohydrates such as starch, 

sucrose, pectins, and cellulose (Hoffpauir, 1953).  Sucrose is the main carbohydrate 

in peanuts.  In processing, there are slight losses in sucrose during roasting, 

although glucose and fructose decrease to a greater extent.  Peanuts also contain 

high levels of potassium, phosphorus, and magnesium, although the amounts 

change with cultivar (Ahmed and Young, 1982). 

 

Overview of Peanut Production  

    

In the early 1990’s, China, the U.S., and Argentina were the most important 

peanut exporting countries, and the primary importers were the European 

Community, Japan, and Canada.  However, imports to the European Community 

have dropped due to a policy shift encouraging the use of rapeseed or sunflower 

seed oil instead of importing peanut oil.  Most of the increases in peanut production 

since the 1970’s have occurred in Asian countries such as India, China, Indonesia 

background image

 

13

and Burma.  The peanut prices in the Rotterdam market have been recognized as 

the world reference price, and this has been tied to monthly estimates of peanut 

production in America’s Southeast (Carley and Fletcher, 1995).   

    

The United States produces approximately 10% of the world’s peanuts 

(Sanders et al., 1993).  Each year in the U.S., 700,000 hectares of peanuts are 

harvested, with each hectare producing approximately 2.8 tons (Smith et al., 1995).  

The U.S. peanut industry relies on an extensive price support and production quota 

system (Carley and Fletcher, 1995).  Peanuts are grown in the Southeast (Alabama, 

Florida, Georgia), Southwest (Oklahoma, Texas, and New Mexico), as well as in 

Virginia and North Carolina (Smith et al., 1995).  There are four major market types 

of peanuts in the U.S.:  runner, virginia, valencia, and spanish (Sanders et al., 1993).   

    

The most important use of world peanut production remains the crushing of 

peanuts for oil and meal (Carley and Fletcher, 1995).  The oil is used for cooking 

and as a salad oil, while the defatted meal is processed into high protein 

concentrates and isolates.  In comparison, a large percentage of peanuts in the 

United States is used for peanut butter and in confections.  Alternative uses for 

peanut protein have been explored for applications such as fermented milk and 

yogurt systems, soup bases, nonfermented cheese analogs, meat product 

ingredients, breads and snack products, and the replacement of casein in extended 

milk products (McWatters and Cherry, 1982). 

Harvesting 

    

Harvesting includes the removal of peanuts from the ground, and separating 

the nuts from soil and vines. Further steps include drying the peanuts from 35-40% 

background image

 

14

moisture content to 15-20%, combining to separate the pods from the plants, 

transport to storage facilities, removing the hulls, and blanching to remove the testa 

from the seeds (Ory et al., 1992).  Peanuts are separated from accompanying 

materials during harvest by vibrating, perforated screens or by a belt screen which 

uses multiple parallel belts rotating continuously around sheaves (Smith et al.

1995).  There is a potential for off-flavor development if the peanuts are damaged 

during handling, because lipoxygenase, which is usually separated from the oil by 

cell compartmentalization, can then oxidize the oil and create off-flavors (Ory et al.

1992).   

    

The harvest is set at a time to maximize the number of mature pods.  

However, immature pods are usually present in every lot, especially during 

abnormally cool or hot harvesting weather, and are difficult to separate from mature 

pods.  The percent of immature pods in a lot depends on the peanut variety, weather 

conditions during growth and development, as well as harvest date (Osborn et al.

2001).   

 

Curing 

    

Curing is the process of reducing the moisture content of peanuts to a level 

maintaining safety and quality (Young et al., 1982).  Curing is needed before 

combining because when the peanuts contain 35-40% moisture, they are soft and 

susceptible to damage by the combine (Ory et al., 1992).  Curing dries the peanuts 

either completely, or to 20-25% wet basis (w.b.) moisture in the field, with a final 

artificial drying in wagons to 8-10%.  If the peanuts are not dried to less than 10% 

background image

 

15

(w.b.) within 3 days, large quality losses result from biological activity (Young et al.

1982).  Fungus growth due to high moisture content can lead to high free fatty acid 

concentrations, caused by fungal lipase activity (Sanders et al., 1993). 

    

In wagon drying, a balance is needed in air flow, air humidity, and drying time 

so that the bottom layers of peanuts are not over-dried, but the top layer of peanuts 

will not spoil before drying is completed (Young et al., 1982).  Deep-bed drying of 

peanuts can be envisioned as the drying of successive single layers.  For each 

layer, the temperature and humidity of the air is changed as it passes through the 

peanuts (Troeger, 1982). 

    

The rate of moisture removal during peanut drying is proportional to the 

difference in vapor pressure of the peanut interior and that of the surrounding air.  As 

the moisture content of the peanut decreases, the time needed to remove a certain 

amount of moisture increases because the vapor pressure difference is not as great.  

When the humidity of the air becomes equal to that of the peanuts, drying ceases 

(Troeger, 1982). 

    

The heat used for drying also promotes reactions of the concentrated peanut 

components (Sanders et al., 1993).  The step of curing in peanut processing initiates 

catabolic processes, such as degradation of carotenoids.  Enzymatic and 

nonenzymatic reactions also occur, which have been only minimally investigated 

(Sanders et al., 1995). 

    

Troeger (1982) conducted drying simulations to determine effects of varying 

parameters on drying time and energy use.  Simulations showed that drying peanuts 

with a higher airflow rate (4.72 m

3

/s versus 3.05 m

3

/s) decreased drying time about 

background image

 

16

6%, while energy use increased 45% as a result. Too low of airflow resulted in a 

greater difference in moisture content in peanuts between the top and bottom layers 

of the dryer, and the initial moisture content of the peanuts also had a significant 

effect on the variation between peanut layers.  Allowing the drying air to rise 15 °C 

reduced drying time by 36%, while energy consumption increased 14%.  However, 

this higher temperature rise also reduced the relative humidity to an unacceptable 

range to maintain product quality (Troeger, 1982).  

    

Delwiche et al. (1986) examined the use of microwaves for peanut curing in 

comparison to traditional methods. Because peanuts must be dried at temperatures 

lower than 35 °C and humidity greater than 60% to maintain quality, drying times 

exceed 30 hours for peanuts which are dried in standard wagons.  Due to faster 

processing times, the energy requirement for microwave vacuum drying was found 

to be less than for traditionally dried peanuts.  However, high moisture shelling 

followed by microwave drying led to elevated levels of Aspergillus flavus growth on 

the seeds.  In addition, as microwave process rate and temperatures increased, 

seed germination potential decreased and the seeds were more susceptible to 

abrasion and impact.  During these experiments, Delwiche et al. (1986) adjusted 

microwave power levels depending on the initial temperature and moisture content 

of the peanuts, using the following equation: 

Q = γ

dry

 c

dry

 (T

f

-T

i

) + γ

dry

 c

w

 [mc

/ (1-mc

i

)] (T

f

-T

i

) + h

lg

 γ

dry

 [(mc

i

 / 1-mc

i

) – (mc

f

/1-mc

f

)] 

Where: 

Q = Energy per unit volume (kJ/m

3

γ

dry 

=

 

Bulk density of dry seeds (kg/m

3

background image

 

17

c

dry

 = Specific heat of dry seeds (1.880 kJ / (kg °C)) 

T

f

 and T

i

 = Final and initial temperature of seeds (°C) 

mc

and mc

f

 = Initial and final seed moisture content (wb) 

c

w

 = Specific heat of water (4.187 kJ/(kg °C)) 

h

lg

 = Heat of vaporization of water (2.418 x 104 kJ/kg at 35 °C) 

    

 

The curing of peanuts at temperatures above 35 °C has been associated with 

anaerobic by-products which produce an off-flavor (Whitaker et al., 1974). An 

increase in the concentration of alcohols, aldehydes and esters, especially ethanol, 

ethyl acetate, and acetaldehyde, is thought to be tied to this change in respiration 

from aerobic to anaerobic (Pattee et al., 1990).  At the high rates of respiration 

occurring at high curing temperatures, oxygen cannot diffuse into the seed at a 

sufficient rate, causing anaerobic respiration to take place. This was shown in an 

experiment by Whitaker et al. (1974), in which a significant depression in oxygen 

partial pressure was found inside peanuts cured at 52 °C compared to those cured 

at 24 °C. 

    

With increasing curing temperature, positive attributes such as roasted 

peanutty decreased and fruity fermented intensity increased (Sanders et al., 1990).  

Volatiles such as mercaptans, carbon dioxide, and carbonyls also increased during 

roasting after high temperature curing (Young, 1973).  Drying temperatures above 

35 °C are avoided to prevent off-flavor formation (Troeger, 1982).   

 

 

background image

 

18

Effect of Peanut Immaturity  

    

Peanut quality is affected by the degree of maturity at harvest, which reflects 

the extent of interaction of genetic, physiological and biochemical processes 

(Sanders et al., 1995).  Maturity in peanuts is achieved more quickly at higher soil 

temperatures, while irrigation practices and harvest date also affect peanut maturity 

class (Sanders, 1989).  Peanuts are a botanically indeterminate plant, which flower 

and initiate peanut development over an extended period of time.  Although in 

general, a larger seed is related to greater degree of maturity, in commercial peanut 

lots of any specific size, a range of maturities is found.  In fact, not all mature 

peanuts are large and not all immature peanuts are small (Sanders et al., 1995).  

Quality characteristics such as roast color, flavor, and storability are variable within 

peanut lots of the same commercial size, and this may be the result of a distribution 

of maturities (Sanders, 1989). 

    

Differences in maturity will affect the carbohydrate and amino acid 

composition, as well as the moisture content of the peanuts.  As the peanuts mature, 

the moisture content decreases, although a range of moisture contents are present 

at harvest of 20-70%.  As a result of this and the related biochemical and physical 

development of the peanuts during processing and shelf life, quality differences can 

occur (Sanders et al., 1993). For example, during maturation and processing steps 

such as curing, the precursors for Maillard reaction reach optimum levels (Sanders 

et al.

, 1995).  Also, as peanuts mature, there is an increase in total oil, 

triacylglycerol, and the oleic to linoleic acid ratio.  At the same time, free fatty acids, 

mono- and diacylglycerols, and polar lipids decrease in concentration. Although 

background image

 

19

there is no direct correlation published between amount of oil and shelf life, a 

significant correlation has been shown between oil content with maturity, which itself 

is related to flavor and shelf life potential (Sanders et al., 1993).   

    

The compositional and structural differences in the proteins and sugars of 

immature peanuts suggest that these components will react differently to processes 

in manufacture (Sanders, 1989).  Vercellotti et al. (1994) formulated a biochemical 

model of carbohydrate turnover during peanut curing.  Immature peanuts had more 

low molecular weight reducing substances and oligosaccharides than the mature 

peanuts at all stages during curing.  In addition, during maturation, many enzyme-

catalyzed reactions occur by way of proteases, lipases, glycosidases, and 

phosphatases to make flavor intermediates.  This dependence on timing may 

change the flavor compounds present in the final product (Sanders et al., 1993).  As 

a result of these compositional differences, the type of response to conditions such 

as high temperature curing or freeze damage will also vary based on maturity 

(Sanders et al., 1995). 

    

The degree of maturity will also affect color development of the peanuts 

during roasting.  Immature peanuts brown at a lower temperature and more rapidly 

than mature peanuts.  Consequently, close control of roasting is needed to reach the 

optimum Hunter L value of 50 ± 1 (Ory et al., 1992).   

    

Immature peanuts also vary in their flavor profiles.  In general, immature 

peanuts are more susceptible to off-flavor formation than mature peanuts (Osborn et 

al.

, 2001), and at a given temperature, immature peanut seeds have a higher level of 

off-flavor production than mature seeds (Pattee et al., 1965).  Immature peanuts 

background image

 

20

have significantly lower intensities of positive notes such as roasted peanutty flavor 

after roasting, and a higher intensity of off-flavors such as painty, cardboardy, and 

fruity-fermented (Sanders, 1989; Pattee et al., 1990; McNeill and Sanders, 1998). In 

addition, sour and bitter notes were higher in immature peanuts, and increased in 

intensity with increasing curing temperature (Sanders et al., 1989).  Sanders et al. 

(1989, 1989b) determined that the flavor potential of any peanut lot is related to its 

percentage of immature peanuts and the methods of curing and handling applied.   

 

Storage 

    

After curing, peanuts can be stored before further processing, and the storage 

conditions will affect the final product quality. When peanuts are stored after harvest, 

storage time and seed size will affect carbohydrate and amino acid composition, 

volatiles, and roast seed blanchability (Pattee et al., 1982). Raw peanuts are subject 

to loss in quality during storage due to insect, bird, and rodent infestation, microbial 

activity, mechanical damage, physical changes such as weight loss or shrinkage, 

biochemical changes in flavor, and absorption of odors (Smith et al., 1995).  Farmers 

stock peanuts, or peanuts which have only been picked and threshed, are stored 

anywhere from one week to as long as 10 months (Smith et al., 1995). 

    

Decreasing the moisture and temperature in a storage facility will decrease 

quality loss during storage.  Generally, the best storage conditions for farmer stock 

peanuts are approximately 10 °C and 7.5% moisture content wet basis (Smith et al.

1995).  However, if the storage conditions drop below 7% moisture or 7 °C, high 

losses in milling quality result when the peanuts are shelled (Smith et al., 1995).  

background image

 

21

    

Peanuts are commonly stored in flat-storage warehouses, including the 

conventional form, the conventional with doghouse, and the muscogee with 

doghouse type warehouses.  Large crops of peanuts can also be stored in circular 

tanks or silos such as those used in the grain industry.  For adequate air circulation 

through the peanut mass, there is a minimum distance which should be maintained 

between the peanut mass and the warehouse roof at the eaves.  Peanuts are loaded 

into a warehouse using a hydraulic lift or hoist to empty peanuts from the drying 

trailer into a dump pit.  A bucket elevator then transports the peanuts to a horizontal 

belt conveyor with a mobile tripper which distributes the peanuts in the storage 

space below. Farmer stock peanuts can be damaged when handled by a bucket 

elevator at belt speeds greater than 61 m/min, by crushing during loading and 

unloading, or by the drop from the tripper to the warehouse floor (Smith et al., 1995). 

    

After storage, peanuts are cleaned, shelled and undergo gravity or density 

separation.  Damaged and split seeds are removed during processing using 

bichromatic machines, cameras, or electronic sorting machines (Smith et al., 1995). 

 

Blanching 

The next steps in peanut processing include blanching and roasting.  The 

process of peanut blanching consists of an application of heat followed by abrasive 

removal of the seed coat.  This step is done for several reasons. Blanching results in 

the removal of the seed coat which contains tannins that contribute off-flavors and 

off-colors (St. Angelo et al., 1977). Blanching also reduces enzyme activity and 

moisture content, which are factors impacting subsequent quality (Adelsberg and 

background image

 

22

Sanders, 1997).   For example, in a study of lipoxygenase activity in blanched 

peanuts, the enzyme activity significantly decreased with increasing heating time 

and temperature.  Furthermore, blanching aids in the removal of damaged or 

discolored seeds, which are associated with aflatoxin contamination (Sanders et al.

1999).  After the seed coats are removed during blanching, electronic color sorters 

are used to detect the damaged seed, effectively reducing aflatoxin in contaminated 

lots (Whitaker, 1997). 

    

Several methods are used for blanching: spin-blanching, water-blanching, 

dry-blanching, alkali-blanching, and hydrogen peroxide blanching.  In spin blanching, 

peanuts are passed through a skin cutter, dried to lower the moisture to 5%, and 

then the skins are loosened and removed using a spin-blancher. Water-blanched 

peanut seeds are slit and treated with 86 °C water for 90 seconds, dried to bring the 

moisture to 5%, and the skins are then removed mechanically (St. Angelo et al.

1977).  

    

In general, the most common method in industrial processing is dry 

blanching.  To dry the peanuts, they are placed on conveyor belts and moved 

through large hot-air ovens in which the direction of air flow is alternated in 

successive zones (Adelsberg and Sanders, 1997).  The peanuts are treated to 

increasing temperatures in subsequent zones from 30 °C to 90 °C, with a total time 

of approximately 45 minutes.  During this time, moisture is removed from the 

peanuts and the seed coat is loosened, and after cooling, the seed coats are 

mechanically removed (Sanders et al., 1999). Specific information on industrial 

blanching protocols is hard to obtain due to proprietary issues.  However, industrial 

background image

 

23

blanching has been imitated using a Proctor and Schwartzingle chamber.  This is a 

flame-heated oven with airflow control, which can be alternated at timed intervals 

while gradually increasing oven temperatures (Adelsberg and Sanders, 1997). 

    

It has been suggested that the mechanism of blanching is due to differences 

in thermal expansion and subsequent contraction of the seed and seed coat, 

resulting in a loosening of the seed coat.  In an experiment by Paulsen and 

Brusewitz (1976), the coefficient of cubical thermal expansion of seeds (50 – 60.5 x 

10

-5

/ °C) was significantly different than that for peanut skins (26.5 – 55 x 10

-5

/ °C), 

and as drying continued, the coefficient for cubical thermal expansion for skins 

decreased due to moisture loss.  This trend led to an increased stress and rupturing 

of the skins as the seeds expanded at an increased rate (Paulsen and Brusewitz, 

1976).   

    

The efficiency of blanching has been correlated to the genetic makeup of the 

plant, with the selection of certain parents resulting in improved blanchability 

(Cruickshank et al., 2003).  However, processing parameters during blanching have 

a significant impact as well.  Adelsberg and Sanders (1997) studied the effects of 

varying parameters on peanut temperature distributions and blanching efficiency. 

The magnitude of peanut bed temperature variation during blanching was related to 

final oven set point temperature and to dwell time at each temperature setting.  The 

temperature variation of individual seeds was up to 5 °C between the seed surface 

and a set distance (3 mm) inside the seed.  This difference was thought to be due to 

the high oil content in peanuts, which leads to low thermal conductivity values 

(Adelsberg and Sanders, 1997). Individual seed variation in temperature may affect 

background image

 

24

degree of enzyme inactivation, moisture loss, blanchability, and storage stability 

(Adelsberg and Sanders, 1997). In addition, an increase in the range of exit surface 

temperatures of the peanuts was correlated to non-uniform drying, which causes a 

large variation in single seed moisture distribution (Vilayannur, 1998; Rausch, 2002).   

    

The effects of moisture content and time-temperature parameters were also 

evaluated in terms of blanching efficiency. In general, with increasing temperatures 

and increasing moisture loss, blanching becomes more efficient (Paulsen and 

Brusewitz, 1976; Katz, 2002).  Blanchability was correlated with the final oven set 

point temperature and negatively correlated with the final moisture content when 

above 3.8% (Adelsberg and Sanders, 1997). The specific parameters giving the best 

blanching efficiencies are still being debated.  Adelsberg and Sanders (1997) 

reported that reduction of peanut moisture content from 5.5 to < 4 % using 

temperatures of 87.7 °C for 45 and 60 minutes and 98 °C for 30, 45, and 60 minutes 

resulted in blanchability above 75%.  However, Katz (2002) found that blanching 

treatments in which peanut temperatures exceeded 96.7 °C and moisture content 

was lower than 6.0%, showed blanching efficiencies greater than 84.5%. 

    

The perception in the peanut industry is that blanching reduces shelf life 

(Sanders et al., 1999).  For example, blanching has been tied to an increase in lipid 

oxidation in raw peanuts (Ory et al., 1992).  Pattee and Singleton (1971) suggested 

that blanching may increase production of off-flavors in peanuts during storage 

compared to raw peanuts, because although methanol and acetaldehyde 

concentrations decreased during blanching, pentane increased over storage as a 

result of enzyme reactions or lipid oxidation. However, in a study by Sanders et al. 

background image

 

25

(1999), no detrimental effects of blanching on oxidative stability were found.   

Although blanched and nonblanched peanuts were different in peroxide value and 

OSI value, all values were within acceptable ranges, indicating no meaningful shelf 

life differences over storage (Sanders et al., 1999).   

    

The quality and oxidative stability of the peanuts may depend on temperature 

and time parameters used during blanching.  In a study by Rausch (2002), peanuts 

were stable to lipid oxidation after microwave blanching, as determined by peroxide 

value, oxidative stability index, hexanal and pentanal concentrations, when treated 

with specific power and exposure time conditions.  However, peanut batches which 

reached surface temperatures above 100 °C declined rapidly in quality over the 28-

week storage period (Rausch, 2002).  Blanching temperature has also been 

correlated with other flavor effects.  Positive attributes such as roasted peanutty had 

a weak negative relationship with final blanching temperature in peanuts blanched to 

high temperatures (98.9 °C) and for longer times (Sanders et al., 1999). 

    

It has also been reported that different types of blanching appear to have 

varying effects on shelf life stability.  Unblanched peanuts were the least and water-

blanched were the most stable of roasted peanuts (St. Angelo et al., 1977). 

However, it has been reported that in unroasted peanuts, water-blanched peanuts 

have the shortest shelf life, while spin-blanched peanuts and unblanched raw 

peanuts were more stable. It has been suggested that water-blanched peanuts gain 

a glaze of protein and lipids washed from the insides of slits made during blanching.  

This glaze oxidizes and shortens shelf life of the peanuts as compared to spin-

blanched nuts and unblanched nuts which are not roasted (St. Angelo et al., 1978).  

background image

 

26

Additional detrimental effects occur in peanuts which are blanched to reduce 

aflatoxin levels.  In this case, blanching may result in a more rapid deterioration of 

already inferior quality peanuts (Sanders et al., 1999). 

    

Moisture content has been shown to affect the stability and flavor quality of 

the peanuts (Pattee et al., 1982; Sanders, 1998; Katz, 2002).  The best blanching 

efficiencies result from peanuts which are subjected to the highest temperatures 

during blanching and lose the most moisture.  In addition, a uniform moisture 

distribution in the peanut batch after blanching allows for a more uniform roast and 

overall better quality of the final product (Rausch, 2002).  Moisture content also has 

an effect on formation of flavor precursors during storage before final processing.  

Peanuts which were stored at a higher moisture content (8.7-9.2% versus 6%) had 

more hydrolysis of sugars and proteins, as well as a greater deterioration of quality 

(Pattee et al., 1982).  Furthermore, higher moisture peanuts had lower roasted 

peanutty intensity and pyrazine concentrations, and had higher intensities of sensory 

notes related to lipid oxidation, such as painty and cardboard (Abegaz et al., 2004). 

 

Roasting 

    

After blanching, many of the peanuts will be roasted for use in peanut butter, 

confections, or other snack foods.  During processing in a continuous roaster, the 

product is metered onto the roaster bed which is an oscillating pan or a fixed-pitch 

belt.  Hot air is generated in the upper chamber by using either electricity or fuel 

sources.  This heated air is then distributed from above or below to make a fluidized 

bed.  Mixing is induced in the peanut bed by bubbling air from below or jet shearing 

background image

 

27

when the air is distributed from above (Cammarn et al., 1990).  A recirculation fan is 

used to remove exhaust gas.  Peanuts are roasted at an internal temperature of 265 

to 300 °F, and the moisture content is lowered from 4-6% moisture to 1% moisture 

(Hoffpauir, 1953).  As a result, reactions such as the Maillard reaction occur which 

are key to the formation of typical roasted peanut flavor and color. 

    

The predominant reactions occurring during roasting include the Maillard 

reaction, Strecker degradation, and sugar caramelization.  The Maillard reaction 

involves a reducing sugar, such as glucose from the hydrolysis of sucrose, and an 

amino acid under specific conditions of pH, water activity, and temperature.  The 

reaction intermediate loses a water molecule to form glycosylamine.  After the 

subsequent Amadori rearrangement, an amino keto sugar is formed, which can lead 

to further decomposition products (Cammarn et al., 1990). 

    

The Strecker degradation involves the decomposition of glucose to a dione, 

which reacts with an amino acid and loses water molecule, and eventually 

polymerizes to form pyrazines or other products.  At high temperatures, 

caramelization of sugars can also occur.  Caramelization involves the dehydration 

and decomposition of sugar molecules to form a variety of products such as 

aldehydes, ketones, sugar fragments, and unsaturated rings.  These unsaturated 

molecules can absorb light to make brown pigments (Cammarn et al., 1990). 

    

In addition to protein and carbohydrate reactions, after the peanuts are 

roasted, the oil is more susceptible to oxidation.  This occurs despite the fact that 

lipoxygenase and polyphenoloxidase have been denatured, because of the 

presence of nonenzymatic catalysts (Ory et al., 1992).   

background image

 

28

  Microwave Processing 

    

Microwave processing has been explored as an alternative to traditional 

processing methods, due to its speed of operation, energy savings and efficient 

process control.  Because heating takes place only in the food material and not the 

surrounding medium, microwave processing can reduce energy costs.  Shorter 

heating times lead to greater nutrient retention, better quality characteristics such as 

texture and flavor, as well as increased production (Giese, 1992).   

    

The development of the continuous conveyor microwave oven in the 1960’s 

greatly aided the industrial use of microwaves for food processing, due to a more 

uniform distribution of microwave energy.  Conveyor systems include resonant-

cavity systems and waveguide systems.  A conveyor passes through a microwave 

field in a resonant cavity system, while the product conveyor in a waveguide system 

runs through a slot perpendicular to the waveguide (Giese, 1992).   

    

There are not many large-scale industrial microwave applications currently, 

with less than 500 worldwide (Giese, 1992).  The exceptions include the use of 

microwaves for tempering of frozen foods, precooking of poultry and pork products, 

and drying of pasta and onions.  Tempering using microwaves can be completed in 

minutes, compared to the 2-5 day period needed for traditional thawing techniques, 

and there is less microbial growth, little weight loss, increased juice and flavor 

retention, and less space required.  Microwave cooking has been increasingly 

successful for precooking bacon, meat patties, and poultry, due to increased yields, 

shorter preparation times, and increased product quality (Mudgett, 1989). The 

cooking of bacon by microwave processing also yields high quality rendered fat as a 

background image

 

29

by-product (Giese, 1992).  Drying is conducted with combination of conventional 

heating and microwaves for pasta, which utilizes less energy and less case 

hardening (Mudgett, 1989).  In addition, many industrial processes combine 

conventional and microwave heating to raise the surface temperature and improve 

browning and crisping, to accelerate drying rates, or to reduce microbial counts 

(Mudgett, 1989).   

    

Other applications are still being explored for microwave processing.  

Microwaves are commonly used for drying cookies and biscuits, but are not used for 

commercial bread baking despite energy savings reported.  Microwave sterilization 

is currently conducted at 110-130 °C under pressure, although problems are still 

being addressed such as development of proper packaging materials, excessive 

surface heating, and cooling after sterilization (Giese, 1992).  Microwave processes 

with potential include vacuum and freeze drying, fat rendering, roasting, and 

pasteurization (Mudgett, 1989).  In the drying of mushrooms, combined microwave 

and hot air drying allowed a shorter heat treatment; as a result, the mushrooms had 

a higher aroma retention and preservation of the volatile ratios which are significant 

to mushroom flavor (DiCesare et al., 1992).    Microwaves have also been 

investigated as an alternative method to blanch vegetables (Sevirini et al., 2003), 

and this method has shown advantages in vitamin C and carotenoid retention in 

microwave-blanched carrots, spinach and bell peppers (Ramesh et al., 2002) 

In peanut processing, microwave vacuum drying has been researched as a 

method for curing (Delwiche, 1986).  Microwaves have also been investigated as an 

alternative method to roast peanuts (Megahed, 2001).  However, Megahed (2001) 

background image

 

30

concluded that in comparison to conventional roasting methods, the use of 

microwave technology resulted in the increase of conjugated dienes and trienes, 

epoxy and hydroperoxide formation, oil darkening, and the general formation of 

undesirable and possibly harmful oxidation products and pigments.  Likewise, 

Yoshida et al. (2005) found that following microwave roasting, the lipid profile of 

peanuts changed unfavorably, as free fatty acids and diacylglycerols increased 

significantly, although the unsaturated fatty acids which were located in the second 

position on the triacylglycerol were protected from oxidation. 

 

Mechanisms of Action 

    

Microwaves are electromagnetic waves which are between radio and infrared 

wavelengths on the electromagnetic spectrum. High frequency energy is emitted by 

the magnetron, and includes poles of positive and negative charge changing 

direction billions of times each second.  As a result, water, salts, and other polar 

molecules line up according to charge in the microwave electric field (Giese, 1992). 

In orientation polarization, dipoles such as water attempt to follow the rapidly 

changing electrical field, and energy is lost due to random thermal motion of water; 

this type of polarization is highly temperature dependent (Ryynanen, 1995).  

Hydrated ions in a food also try to move in the direction of the changing electrical 

field, and transfer energy as a result (Ryynanen, 1995). 

    

Microwave energy heats foods instantaneously, unlike conventional heating 

methods, which transfer thermal energy from product surfaces inward 10-20 times 

more slowly (Mudgett, 1989).  Heating using microwaves is based on the ability of 

background image

 

31

the material to absorb electromagnetic radiation and convert it into heat.  The 

magnetic field interactions in food are negligible, due to only trace amounts of 

magnetic materials present such as nickel, cobalt, or iron.  As a result, only the 

electric field has an effect (Ryynanen, 1995; Mudgett, 1989).  The overall heating 

rate in microwave processing is dependent on dielectric constant and dielectric loss, 

specific heat, and density.  Microwave energy inactivates microorganisms by thermal 

denaturation of proteins and nucleic acids, just like conventional thermal processing, 

and depends on the same time/temperature relationships (Mudgett, 1989). 

    

The transmission properties of the electromagnetic waves are related to the 

dielectric and thermal properties of the food, and also determine the distribution of 

energy (Ryynanen, 1995).  Packaging also has an effect, as microwaves are 

transmitted through ceramic, plastics, paper, and glass, but metals such as 

aluminum foil reflect microwaves (Giese, 1992).  Energy reflected from the surface 

causes standing wave patterns of nodes and antinodes, which result in uneven 

energy distribution at product surfaces and hot and cold spots within the product 

(Mudgett, 1989). 

    

The microwave penetration depth and overall heating rate will be determined 

by the specific heat, density, surface to volume ratio, thermal conductivity, 

evaporative cooling of the food, as well as the shape of the food.  The sphere and 

cylinder are the best shapes for microwave heating, because microwaves can 

penetrate the food from all sides.  In general, foods which have a high surface-to-

volume ratio will cook more rapidly (Giese, 1992).  Products heated in a continuous 

microwave with slab geometry, such as trays of peanuts in microwave blanching, 

background image

 

32

experience more heating on the surface than in the middle of the product, which 

exposes a limitation of infrared thermometry for process measurements (Rausch, 

2002) 

    

The moisture content and temperature of the product affect rates of internal 

conduction and surface convection.  These are determined by thermal diffusivity, 

and are also affected by heat loss from surface cooling by moisture evaporation 

(Mudgett, 1989).  The electric field inside the load is affected by the dielectric 

properties, geometry of the load, and the oven configuration (Ryynanen, 1995). 

    

For practical purposes, penetration depth is calculated, which is the depth 

below a plane surface at which the power density of the electromagnetic wave has 

decayed by 1/e (~37%) of its surface value (Ryynanen, 1995).  Foods which contain 

more moisture and salt content will exhibit less penetration depth by the 

microwaves, and subsequently have less uniform heating (Mudgett, 1989; Giese, 

1992).   

 

Dielectric Properties 

    

The permittivity describes the ability of a material to absorb, transmit, and 

reflect electromagnetic energy.  Permittivity has two parts:  the real permittivity or 

dielectric constant, ε', and the imaginary component or dielectric loss, ε".   

Permittivity is described by the equation (Ryynanen, 1995): 

ε = ε' - j ε" 

Where: 

 ε  =   Relative complex permittivity 

background image

 

33

           ε'  =   Relative real permittivity (dielectric constant) 

 

ε"  =   Relative dielectric loss factor 

 

j    =   Imaginary unit 

 

    

The dielectric constant relates the ability of the material to absorb energy, 

while the dielectric loss factor is related to various mechanisms of energy 

dissipation.  The dielectric loss is always positive and usually smaller than the 

dielectric constant (Ryynanen, 1995).  The dielectric constant decreases with 

increasing temperature, while temperature has a variable effect on dielectric loss, 

depending on the product.  A large dielectric loss will translate into shorter heating 

times (Giese, 1992).   

    

Dielectric properties are most commonly measured in one of three ways:  by 

open-ended coaxial probe, transmission line, or by resonant cavity.  In all of these 

methods, a microwave signal is generated at a certain frequency and is directed at 

or through the material being tested.  By observing the changes in signal caused by 

the material, the dielectric properties are calculated (Engelder and Buffler, 1991). 

In general, food products have a loss factor of 25 or less, and exhibit a 

penetration depth of 0.6-1.0 cm.  However, dielectric properties change with the 

composition of the food and with frequency. Both ε' and ε" are affected by the 

moisture content, concentration of salt, frequency of electromagnetic field, and the 

temperature.  Dielectric properties are also affected by the physical state of the food.  

For example, as the temperature of frozen goods rises through thawing, both ε' and 

background image

 

34

ε" increase greatly, but then decrease after thawing with rising temperature 

(Ryynanen, 1995). 

    

 Water is the main component of most foods, and as a result, its 

concentration will also determine its dielectric properties.  Dielectric properties have 

been of interest in agricultural products for use in determining moisture content.  In 

agricultural products, the dielectric properties vary widely among different kinds of 

grain, crop and weed seed, although in general both ε' and ε" are greater in samples 

of higher bulk densities and higher equilibrium moisture content.  For example, the 

dielectric properties at microwave frequencies have been used to nondestructively 

estimate the moisture content of shelled peanuts (Trabelsi and Nelson, 2006).   

The salt in foods binds the free water molecules, and acts as a conductor in 

an electromagnetic field.  As a result, salt depresses the permittivity and elevates the 

dielectric loss factor when compared to pure water, because it adds charge carriers 

to the matrix.  However, while ε' increases with water content, low or moderate salt 

content does not affect this value much (Ryynanen, 1995).  For salty foods at lower 

frequencies, ε' decreases sharply with a rise in temperature.  In pure water, ε' 

increases slightly with decreasing frequency.  The degree of influence of water and 

salt content in a food depends on the amount to which they are bound or restricted 

in movement by other food components (Ryynanen, 1995).  Likewise, the effect of 

colloidal organic solids is to depress the permittivity (dielectric constant) by excluding 

more dielectrically active materials such as water from the volume.  The exclusion of 

water by carbohydrates affects dielectric properties, as carbohydrates do not show 

much dipole polarization at microwave frequencies (Ryynanen, 1995).  For fats and 

background image

 

35

oils, both ε' and ε" are low and relatively independent of frequency and temperature 

(Ryynanen, 1995). 

    

The dielectric properties of shelled and unshelled peanuts have been 

measured in bulk samples (Trabelsi and Nelson, 2004).   Shelled peanuts have 

much higher densities than unshelled peanuts, and the corresponding difference in 

dielectric properties relates to the amount of water interacting with the electric field, 

as well as proportions of air and dry matter in the peanuts.  Trabelsi and Nelson 

(2004) also found that in peanuts, the dielectric constant and dielectric loss both 

increase with increasing moisture content of the peanuts, while as microwave 

frequency increases, the dielectric loss increases but there is little change in the 

dielectric constant.  A range of dielectric properties at frequencies between 6 and 18 

GHz was tabulated (Trabelsi and Nelson, 2004).   Likewise, in a study by Boldor et 

al

. (2004), the dielectric properties of peanut pods and kernels were reported at a 

range of temperatures (23-50 °C) and moisture contents (18-39%).   

 

Microwave Blanching of Peanuts 

   

The advantages of using microwaves for blanching include reduced 

processing times, increases in shelf stability, and increase in nutrient retention.  In a 

study using a series of individual trays of peanuts passing through a microwave 

applicator, Rausch et al. (2005) examined the potential use of microwaves for 

peanut blanching. Reducing the moisture content of the peanuts to 6% using 

microwave blanching required 6 minutes compared to 60 minutes using traditional 

forced heated air (Rausch et al., 2005).  Later refinement of the microwave 

background image

 

36

applicator allowed a solid bed of peanuts to be exposed to microwave energy in a 

continuous process.  This eliminated the heat reflection and focusing effect observed 

by Rausch et al. (2005) and prevented the subsequent wide variation in peanut bed 

surface temperatures (Boldor et al., 2005).   

Several studies have examined the effects of processing parameters on 

blanching efficiency in peanuts.  In a study by Rausch et al. (2005), the microwave 

treatments in which the peanuts reached the highest surface temperature (>85 °C) 

and resulted in low moisture contents (6%) resulted in high blanching efficiencies 

over 85%.  These treatments resulting in 4.8-6.0% final moisture content also 

provided the longest shelf life as determined by PV, OSI, and hexanal and pentanal 

content (Rausch et al., 2005).  Similarly, all microwave-blanched peanuts were more 

oxidation stable than oven-blanched peanuts in a study by Katz (2002).  In 

microwave blanching of peanuts, increased heat treatment to 110 °C surface 

temperature of the peanuts improved oil stability as evident by the lower peroxide 

value and higher oxidative stability index (Katz, 2002).  However, the mildest 

microwave blanching treatment (4.7 kW for 2.85 min) was often indistinguishable 

from unblanched and oven-blanched peanuts in oxidative stability (Katz, 2002). 

 

Flavor Chemistry of Peanuts 

    

Raw peanuts contain volatiles characteristic of lipid oxidation that arise 

through natural enzymatic processes or by degradation of damaged seeds (Waltking 

and Goetz, 1983). The volatile components of raw peanuts associated with 

lipoxygenase activity include: ethanol, pentane, pentanal, and hexanal (Pattee et al.

background image

 

37

1969). The flavor characteristics of major headspace volatiles in raw peanuts were 

identified as musty aftertaste, fruity, and musty (Young and Hovis, 1990).  A 

combination of γ-butyrolactone, benzaldehyde, indene, 2-methoxy-3-

isopropylpyrazine, nonanal, benzyl alcohol, and alkyl-substituted benzenes have 

also been associated with the legume-like flavor (Fischer and Grosch, 1981).  In 

addition, high amounts of raw/beany flavor in the raw peanuts have been correlated 

with methanol and ethanol concentrations (Crippen et al., 1992). 

 

Flavor Production During Roasting 

    

The unique flavor of roasted peanuts drives product marketing in the peanut 

industry.  This flavor is the result of genetics, production and handling, storage, and 

processing factors (Sanders et al., 1995).  The basic characteristics of roasted 

peanut flavor have been described as nutty, stemming from the presence of 

methylpyrazine, 2,6-dimethylpyrazine, and 2-methyl-5-ethylpyrazine; cheesy, from 

isobutyric and valeric acids; and garlic, from sulphides present in the peanuts (Lee, 

1980).  The thermal products of the roasting process contribute to the unique peanut 

flavor, and are affected by environment during storage and the initial mix of flavor 

precursors (Vercellotti et al., 1994).  Non-enzymatic carbonyl-amine browning and 

lipid oxidation reactions are the sources of volatile flavor compounds in peanuts, and 

include interactions between peanut components as well as thermal decomposition 

products and loss of volatiles (Hoffpauir, 1953; Warner et al., 1996). 

    

Maillard reactions are primarily responsible for browning reactions in roasted 

peanuts, although caramelization of sugars plays a minor role.  The products of 

background image

 

38

browning reactions include pyrazines, pyrroles, furans, and other low molecular 

weight compounds (Ahmed and Young, 1982).  However, although many 

compounds have been found in roasted peanuts which also contribute nutty or 

roasted character to other roasted foods, such as potato chips, coffee beans, and 

cocoa (Mason et al., 1969; Waltking and Goetz, 1983), the characteristic roasted 

peanutty component remains elusive. 

    

The concentration of carbohydrates and other carbonyls impacts peanut 

flavor through the Maillard reaction during roasting. During roasting, moisture and 

volatiles are driven off, while proteins are denatured and are involved in Maillard 

reactions (Hoffpauir, 1953).  Reducing sugars are liberated from sucrose and free 

amino acids are liberated from large peptides during roasting to form Maillard 

reaction products.  The heating process destroys the integrity of the membranes 

separating starch, oil, and storage proteins in the peanuts, resulting in reaction rates 

approximating the Arrhenius model (Mason et al., 1969). 

    

In order to react with amino acids, the carbohydrate must be a reducing 

sugar, polyhydroxycarbonyl compound or a breakdown product such as that which 

results from the hydrolysis of sucrose into fructose and glucose.  These 

carbohydrates can then form a Schiff base with amino acids, which undergo 

reactions to become reductones, and then in turn are formed into any of a series of 

flavor compounds through condensation and ring closure reactions.  For example, 

imidazoles and pyrazines are formed which can condense into colored polymers 

(Sanders et al., 1995).  In addition to Maillard products, carbonyls are produced by 

Strecker degradation and oxidation, but then may be lost by volatilization (Buckholz 

background image

 

39

et al.

, 1980).  Likewise, sugars present can undergo caramelization or can be 

degraded (Hoffpauir, 1953).   

    

The volatiles produced by roasting have been classified into three groups 

(Ory et al., 1992): those which increase in production rate over a wide range of 

temperatures (such as methanol, acetaldehyde, 3-methylbutanal, N-methylpyrrole, 

and 3- carbon substituted pyrazines), those produced at low concentrations at 

temperatures below 142 °C (2-methylpropanal, dimethylpyrazine, 4-carbon 

substituted pyrazines, benzene acetaldehyde), and a third group which is little 

affected by an increase in roasting temperature (ethanol and lipid oxidation 

products).  

    

Pyrazines, which are volatile heterocyclic nitrogen-containing compounds, are 

the major flavor compounds impacting roasted peanut flavor (Warner et al., 1996; 

Baker et al., 2003). Pyrazines and a pyrrole were first identified in roasted peanuts 

by Mason and Johnson (1966) by making aqueous condensates of stripped volatiles 

of Spanish peanuts, and subsequent analysis by gas chromatography-mass 

spectrometry (GC-MS).  Nuclear magnetic resonance, ultraviolet detection and mass 

spectrometry were used to identify methylpyrazine, 2, 5-dimethylpyrazine, 

trimethylpyrazine, ethylmethylpyrazine, dimethylethylpyrazine, and N-methylpyrrole 

in roasted Spanish peanuts (Mason and Johnson, 1966).  Through vacuum 

degassing of pressed, roasted peanuts followed by GC-MS, IR and UV identification, 

Johnson et al. (1971) first identified 19 alkylpyrazines present in the basic fraction of 

roasted peanuts.  Most of the alkyl pyrazines reported were attributed to browning 

reactions.  However, the formation of 2-phenyl-2-alkenal was attributed to aldol 

background image

 

40

condensations between phenylacetaldehyde and aliphatic aldehydes, acetaldehyde, 

isobutyraldehyde, or isovaleraldehyde, with the next step being dehydration. 

Likewise, the headspace volatiles of roasted peanuts held in storage showed 2-

methyl pyrazine and 2,6-dimethyl pyrazine in the highest concentrations, of 11.19-

25.82 ng/mL headspace gas/10g peanuts (Warner et al., 1996).   

    

Several pathways have been suggested for the formation of pyrazines, 

including the reaction of sugars with amino acids, condensation and eventual 

cleavage to form alkylpyrazines.  Alternatively, at high temperatures, sugars may 

first rearrange and cleave into smaller fragments, which then condense with amino 

acids to form alkylpyrazines, and this latter is the more likely route in roasted foods 

(Koehler and Odell, 1970). 

    

However, pyrazines are not the only compounds which have been detected in 

peanuts.  In a study of roasted peanut volatiles, Mason et al. (1967) found 

acetaldehyde, isobutyraldehyde, benzaldehyde, phenylacetaldehyde, as well as 

tentative identification of 2-methylbutanal, 3-methylbutanal, and 3-methyl-2-

butanone using 2,4-dinitrophenylhydrazone derivatives.  These aldehydes were 

thought to arise by Strecker degradation of the corresponding amino acid.  Ethyl 

acetate, toluene, and N,N-dimethylformamide were also identified (Mason et al.

1967). Other heterocyclic and sulfur compounds, such as phenols, ketones, esters, 

alcohols, and hydrocarbons were found among the volatile components of roasted 

peanuts by Walradt et al. (1971).  Basha and Young (1996) separated peanut seed 

proteins into fractions by gel filtration, heated these fractions, and tested the 

resulting headspace gasses for flavor volatiles present in roasted peanuts, such as 

background image

 

41

n-methylpyrrole.  Walradt et al. (1971) also identified 5, 6, 7, 8-tetrahydroquinoxaline 

and methyl- and ethyl acetylpyrazine as occurring in roasted peanuts for the first 

time. Johnson et al. (1971b) identified 24 compounds including seven furans, six 

pyrroles, three 2-phenyl-2-alkenals, and two thiophenes in the neutral fraction of 

roasted peanuts, specifically: toluene, methyl disulfide, n-hexanal,  

2-methyltetrahydrofuran-3-one, furfural, 5-methylfurfural, furfuryl alcohol, 

naphthalene, acetyl-2-thiophene, N-(2-furfuryl)-pyrrole, phenyl-3-furan, 2-phenyl-2-

butenal, 2-acetylpyrrole, pyrrole-2-carboxaldehyde, and 5-methyl-2-hexenal.   

    

The compounds isobutyraldehyde, isovaleraldehyde, 2-methylbutanal, 1-

methylpyrrole, 2-methylpyrazine, and 2,5-dimethylpyrazine were identified by 

polymer adsorption method and subsequent mass spectrometry in roasted peanuts 

(Buckholz, Jr. et al., 1980b).  Ho et al. (1981) reported many flavor components for 

the first time using nitrogen gas to remove volatile components of roasted peanuts 

and subsequent condensation and ether extraction, including lactones, pyrazines, 

pyrroles, pyridines, sulfides, thiophenes, and furanoids. Hexanal, 1-methylpyrrole, 

cyclobutanol, 4-ethyl-2, 5-dimethylsoxazolidine, 2, 6-dimethylpyrazine, 1-hexanol, 

and acetic acid were detected in raw, roasted, and fried Runner peanuts (Burroni et 

al.

, 1997). In fact, when Pattee and Singleton (1981) reviewed volatiles in roasted 

peanuts, they found a total of 223 compounds.  

     

The sensory analysis of roasted peanut flavor has been correlated to pyrazine 

levels (Maga, 1982). Specifically, 2-ethyl-3-methylpyrazine as well as 2-nonenal has 

been associated with the peanutty sensory characteristic (Clark and Nursten, 1977).  

An increase in pyrazine compounds was related to a transition between weak and 

background image

 

42

strong roasted flavor in peanuts (Leunissen et al., 1996; Buckholtz et al., 1980).  

Methylpropanal, methylbutanal, dimethylpyrazine, and methylethylpyrazine have 

been related to dark roasted flavor in peanuts (R> 0.84) using both a dynamic 

headspace technique and direct GC (Crippen et al., 1992).  Pyrazine 

measurements, rather than Hunter LAB value, have also been used with increased 

accuracy in relating peanut aroma and flavor in industrial processing, where a mix of 

genotypes may be used (Baker et al., 2003). 

    

Several efforts have been made to tie specific pyrazines to the sensory 

“roasted peanutty” characteristic.  Mason and Johnson (1966) suggested that 

trimethylpyrazine or 2-methyl-5-ethylpyrazine might be responsible for the 

characteristic roasted note in peanuts.  2, 3, 5-trimethylpyrazine appears also to be a 

good indicator of roasted peanut flavor especially in Florida MDR 98 peanuts (Baker 

et al.

, 2003).  However, in peanuts roasted above 150 °C, 2,5-dimethylpyrazine had 

a high correlation with roasted peanut flavor and aroma, as compared to L-values, 

for all genotypes of peanuts tested (Baker et al., 2003).  Methylpyrazine is 

associated with the sensory characteristic of "roasted" and is desirable at low 

concentrations; however, at higher concentrations of methylpyrazines as well as 

other pyrazines, the flavor becomes more bitter (Leunissen et al., 1996). 

    

The peanuts used for roasting are a mix of genotypes, seed sizes, maturities, 

and seed composition, so establishing the relationship between volatile compounds 

and roasted peanut flavor would allow for roasting optimization (Baker et al., 2003).  

However, not only are pyrazines the most substantial compound tied to positive 

characteristics in roasted peanuts, they also function to obscure some off-flavors.  In 

background image

 

43

fact, Ory et al. (1992) suggested that the quality of volatiles in peanuts is easier to 

determine in raw peanuts, because volatiles formed during roasting may obscure 

smaller peaks. 

    

Roasted peanuts are susceptible to eventual fade in the flavor profile, which 

may be due to lipid oxidation.  Flavor-fade seems to be associated with the masking 

of pyrazines and other "roasted peanut" flavor compounds by large quantities of low-

molecular weight aldehydes produced during lipid oxidation, such as hexanal, 

heptanal, octanal, and nonanal (Dimick, 1994).  Eliminating or decreasing the rate of 

flavor-fade requires understanding the relationships between carbonyl-amine and 

lipid oxidation reactions, as well as degradation and polymerization reactions of 

heterocyclic nitrogen compounds (Warner et al., 1996). 

The proteins in peanuts may also be involved in off-flavor formation.  Basha 

et al.

 (1998) isolated a high molecular weight protein fraction from peanut seed 

which was involved in off-flavor production during the roasting of peanuts.  The 

Maillard reactions of sulfur amino acids with carbohydrates can also cause sulfide or 

sulfur heterocyclic off-flavors, although small amounts of these compounds can add 

positively to overall flavor (Sanders et al., 1995).  

    

 

Roasting Parameters Effect on Flavor 

    

Although current quality standards for roasted peanut flavor are based on 

seed color and changes in moisture content after roasting, other factors such as 

peanut genotype, harvest maturity, planting date, and improper curing and drying 

also affect roasted flavor (Baker et al., 2003).  Pyrazine formation is increased by 

background image

 

44

basic pH, and higher concentrations of certain sugars such as fructose.  The specific 

type of pyrazine formed is influenced by the nitrogen source (Koehler and Odell, 

1970). 

    

Time and temperature conditions of roasting have perhaps the most 

significant impact on compound formation.  Leunissen et al. (1996) found that the 

concentrations of pyrazine compounds and hexanol, hexanal, and methylpyrrole 

were related to the severity of the roasting conditions.  In a model system study, 

Koehler and Odell (1970) found that no pyrazine compounds were formed at 

temperatures less than 100 °C, but above this temperature pyrazine yield rapidly 

increased.  Roasting at temperatures above 120 °C produces a wide range of 

compounds in peanuts due to Maillard reactions (Leunissen et al., 1996).  In the 

early stages of a heating reaction at 120 °C, methylpyrazine was the major product, 

while the ratio of dimethylpyrazine to methylpyrazine steadily increased thereafter.  

At temperatures above 150 °C, some pyrazine degradation may occur (Koehler and 

Odell, 1970).  By direct chromatography, Vercellotti et al. (1992) found 

methylpropanal, methylbutanal, methylbutanol, methylpyrazine, dimethylpyrazine, 

methylethylpyrazine, and vinylphenol to vary with degree of roast.  Other factors will 

affect roasting temperature, as seen in Chiou et al. (1991), where the internal 

temperature of low-moisture seeds (3.4%) was higher than high moisture seeds 

(10.4%). 

 

 

background image

 

45

Flavor Research in Other Nuts 

    

Several studies have been conducted on the flavor profiles of other types of 

nuts, and compounds such as pyrazines and pyrroles have been found in common 

with peanuts. Nutty notes in roasted pecans were attributed to alkyl pyrazines and 

pyridine by Wang and Odell (1972).  In these experiments, the authors characterized 

the volatile compounds of roasted pecans using GC-MS and DNPH derivatives.  

Nineteen carbonyl compounds were identified, of which 17 were found in pecan oil 

extracted from raw and heated pecans, suggesting that the majority of the 

compounds arose from the lipid fraction of the nuts.  Wang and Odell (1972) 

identified the burned notes in roasted pecans as being associated with furfural, 2,3-

pentadione, pyruvaldehyde, and glyoxal, and some of these compounds were 

thought to arise from triacylglycerol breakdown during roasting. 

    

Pyrazines and pyrroles have also been found in roasted filberts.  Sheldon et 

al.

 (1972) identified volatiles in roasted filberts, including pyrazines, pyrroles, 

carbonyls, furans, and two sulfur-containing compounds by GC-MS.  The 

development of roasted filbert flavor appeared to parallel the development of 2-

methylbutanal, 3-methylbutanal, and dimethyl sulfide during roasting. 

    

Likewise, Takei and Yamanishi (1974) studied roasted almond volatiles by 

separating compounds into nonbasic, basic carbonyl, and basic noncarbonyl 

fractions.  Using GC-MS, pyrazines, aldehydes, ketones, and furanoic compounds 

were identified, and several new components were found using a methanol extract.  

In this extract, 2,5-dimethyl-4-hydroxy-3(2H)-furanone was identified as important to 

the flavor of roasted almond (Takei and Yamanishi, 1974). 

background image

 

46

Precursors to Roasted Notes 

    

Initial attempts to identify precursors of roasted peanut flavor led to the 

conclusion that roasted flavor arose from low molecular weight compounds such as 

aleurone grains and protein bodies in the peanut (Mason and Waller, 1964). 

Flavor precursors were believed to form flavors through intracompartmental 

pyrrolysis and degradation of the precursors at temperatures exceeding 132 °C 

(Mason and Waller, 1964).  Then Mason et al. (1969) found that raw defatted 

peanuts would develop typical roasted peanut aroma, no matter if heated in peanut 

oil or oil from another source. Flavor development has been shown to be sensitive to 

peanut maturity, and Mason et al. (1969) correlated the concentration increase of a 

specific peptide to increase in maturity, suggesting that this peptide is a 

characteristic precursor of typical roasted peanut flavor.  Newell et al. (1967) also 

postulated a mechanism for the conversion of amino acids and sugars into volatile 

flavor compounds, with the ultimate product of 2,5-dimethylpyrazine. The same 

group found that aspartic acid, glutamic acid, glutamine, asparagine, histidine, and 

phenylalanine were associated with the production of typical peanut flavor.  These 

amino acid concentrations initially represent a majority of free amino acids present, 

and decrease as they are degraded during roasting (Newell et al., 1967).   

    

Moisture content also plays a part in flavor development.  During roasting, 

hydrolysis can occur in higher moisture peanuts, increasing the amounts of free 

amino acids and monosaccharides, and as a result, the original content of flavor 

precursors in raw peanuts may not be a final indicator of flavor quality (Chiou et al.

1991).  In fact, Chiou et al. (1991) found that the amino acid content of peanuts 

background image

 

47

changed with time of roasting and initial moisture content.  The higher the moisture 

content of the peanuts, the more labile the proteins were to heat denaturation, 

indicating that the moisture content may affect the balance of flavor precursors 

(Chiou et al., 1991). 

    

By identifying the compounds that contribute to a flavor, the precursor 

compounds and path of development may also be eventually identified (Crippen et 

al.

, 1992).  Consequently, appropriate pretreatment of raw peanuts could be applied, 

such as adjustment of moisture content to release precursors and therefore enhance 

formation of roasted peanutty flavor (Chiou et al., 1991). Alternatively, those 

precursor concentrations in plants could be increased using genetic engineering to 

produce food with more flavor (Teranishi, 1998). 

  

Off-flavors in Peanuts 

    

The off-flavors affecting the sensory profile of a food can be caused by a 

variety of sources.  Foods can contain off-flavors either by airborne or waterborne 

contamination, through packaging, oxidation, nonenzymatic browning, enzymatic 

reactions, biochemical reactions, microbial contamination, or light-induced reactions 

(Reineccius, 1991). In non-preserved foods, the most common source of off-flavors 

is microbial activity, due to production of undesirable primary metabolites, chemical 

conversion of certain food constituents, or through residual enzyme activity after cell 

death (Reineccius, 1991).  

    

In peanuts, the causes of off-flavors can be divided into three groups: off-

flavors caused by lipid oxidation, off-flavors which are caused by excessive amounts 

background image

 

48

of ethanol (with possible accompaniment of methylbutanol and 2,3-butanediol), and 

those off-flavors caused by external contamination such as limonene, antioxidants, 

or insecticides (Ory et al., 1992). The main sources of off-flavors in peanuts may be 

lipid oxidation and anaerobic respiration due to temperature abuse.   

 

Flavors Due to Lipid Oxidation 

    

Lipid oxidation is one of the leading causes of off-flavors in raw and roasted 

peanuts, due to a high content of peanut lipids that contain unsaturated fatty acids 

(Warner et al., 1996; Lee et al., 2002).  Oxidation of the fatty acids in peanut oil can 

be caused by light, heat, air, metal contamination, or microorganisms (Ory et al.

1992).  Oil composition is crucial to oxidation rates and by-product formation.  When 

evaluating fatty acid composition on product quality, a higher percentage of oleic 

acid, low percentage of linoleic acid, a high oleic/linoleic acid ratio, and low iodine 

value are associated with better oil stability and longer shelf-life of peanuts 

(Jambunathan et al., 1993).  In a study examining peanuts from US, China, and 

Argentina, Sanders et al. (1992) found that US peanuts had consistently higher 

tocopherol content, lower free fatty acids and peroxide value, as well as lower 

copper and iron content.  In addition, US peanuts had higher oleic:linoleic acid 

ratios, showing the influence of these factors on oxidative reactions and shelf life. 

Lipid oxidation has been correlated with factors such as water activity, relative 

humidity, and especially oxygen concentration in the environment (Labuza, 1971). 

However, the chief causes of lipid oxidation are enzymes such as 

lipoxygenase or lipase (Sanders et al., 1993).  Lipoxygenase is specific for 

background image

 

49

polyunsaturated acids that have a cis-cis 1, 4 pentadiene structure such as linoleic 

and linolenic acids (Ory et al., 1992).  Lipoxygenases activate oxygen to produce 

hydroperoxides at the allylic carbon in polyunsaturated fatty acids, and conjugated 

dienes can be subsequently made by rearrangement.  Hydroperoxides subsequently 

break down into alcohols, alkanes, ketones and aldehydes which can be the source 

of off-flavors in the peanut.  Oxidation by enzymes such as lipoxygenase is likely at 

locations of cell membrane disruption, as reactants previously separated become 

mixed and available for reaction (Ory et al., 1992). 

   

When these enzymes are inactivated by high temperatures during roasting, 

autoxidation becomes the principle source of lipid breakdown (Lee et al., 2002).  

Although all enzymes are denatured during roasting, some enzymes such as 

peroxidase, which contains iron, and polyphenoloxidase, which contains copper, can 

become pro-oxidants after denaturation (Ory et al., 1992).  Transition metals such as 

iron and copper can promote lipid oxidation in peanuts by abstracting hydrogen from 

unsaturated fatty acid to make a radical, or by indirectly generating reactive oxygen 

species (Sanders et al., 1995). 

   

Lipid oxidation can be identified using chromatographic analysis of the 

samples.  Regular lipid oxidation in raw or roasted peanuts is indicated by hexanal 

and/or hexanol in high concentrations, and when present at levels greater than 2 

ppm, these can be detected by taste panelists (Ory et al., 1992). The 

monohydroperoxides that are formed from linoleate oxidation are precursors for 

volatile decomposition products such as nonanal, octanal, decanal, and hexanal, 

and the most predominant of these is hexanal (Min et al., 1989).  Both the quality 

background image

 

50

and quantity of volatiles formed in heat-treated lipids are governed by the type of 

hydroperoxide precursors in the sample (Ulberth and Roubicek, 1993).  Volatiles 

such as ethanol, pentane, and pentanal have also have been associated with lipid 

oxidation (Brown et al., 1977).  Furthermore, lipid oxidation products can be linked 

through glycosidic linkages or hemiacetal and ketal links to polysaccharides, which 

are then released during the roasting process (Vercellotti et al., 1994). 

    

Lipid oxidation can also be identified in a chromatogram by a general rise in 

the base line volatiles beyond hexanal, due to the appearance of oxidation by-

products such as aldehydes, ketones, and hydrocarbons.  Most of the compounds 

with retention times less than hexanal are lost during the roasting process (Ory et 

al.

, 1992).  Volatile profiles of roasted peanuts both with and without lipid oxidation 

were analyzed using direct GC and an external closed inlet device and 

“aromagrams” for different quality peanuts were generated (Vercellotti et al., 1992).  

Vercellotti et al. (1992) also published profiles matching flavor peaks identified with 

GC-O to retention time, enumerating lipid degradation compounds found in the 

rancid peanuts. 

    

Although the flavor and aroma of high quality roasted peanuts is in part due to 

oxidized compounds generated during storage (Ahmed and Young, 1982), these 

compounds can also have a negative impact at higher concentrations.  Oxidation 

reactions can result in decrease of desirable peanut flavor by loss of low molecular 

weight flavor compounds and generation of undesirable volatile carbonyls such as 

nonanal, decadienals, or heptadienals (Sanders et al., 1993).  Vercellotti et al. 

(1992) found that during lipid oxidation, off-flavor producing volatiles such as 

background image

 

51

hexanal are intensified to the high ppm range, while positive olfactory attributes 

become imperceptible as heterocycles and thio-derivatives disappear at high 

oxidation levels.  Low molecular weight aldehydes such as pentanal, hexanal, 

heptanal, octanal, and nonanal can also create a cardboard or oxidative rancid flavor 

(Warner et al., 1996).  St. Angelo et al. (1984) found that when the presence of 

hexanal, hexanol and pentane exceeded concentrations of 2-3 ppm in GC 

chromatograms, the peanuts were judged as rancid by the sensory panel. 

    

Because off-flavors caused by oxidation have been closely correlated to the 

differences in lipid profiles in peanuts, researchers have isolated the peanut oil in 

flavor experiments.  Chung et al. (1993) studied the differences in the headspace 

volatile production from peanut oil heated under a broad range of temperatures from 

50-200 °C simulating mild frying, deep-frying, and near-pyrrolysis conditions, and 

they identified hydrocarbons as the most abundant class, followed by aldehydes. 

During heating, free fatty acids were formed from the hydrolysis of triacylglycerols, 

and these were transformed to γ-hydroxy fatty acids by oxidative attack of hydroxy 

radicals, followed by transformation to lactones by cyclization.  These lactones may 

be responsible for the formation of fruitlike aromas in the peanuts, as γ-octalactone 

and γ-nonalactone were found in the peanut oil.  Formation of fatty and rancid off-

flavors in peanut oil during heating was attributed to the formation of carbonyl 

compounds.  These low molecular weight carbonyls could be isolated only by 

derivatization to thiazolidine compounds (Chung et al., 1993). 

    

Lipid oxidation reactions are strongly influenced by storage conditions, and as 

a result, off-flavors can develop during this time.  In a study by Warner et al. (1996), 

background image

 

52

headspace concentrations of hexanal, heptanal, octanal, and nonanal increased 

during storage, with hexanal being the major aldehyde at concentrations of 187-865 

ng/mL headspace gas/10g peanuts after 26 days.  In combination with this, higher 

TBA values and oxidative rancid flavor scores were seen, indicating that off-flavor 

production was in part due to production of low-molecular weight aldehydes from 

lipid oxidation.   

    

Peanuts naturally contain antioxidants which can slow or prevent lipid 

oxidation reactions.  For example, it has been noted that peanuts contain alpha-

tocopherol and carotenoids (Sanders et al., 1995).  In addition, some products of 

reducing sugar reactions and Maillard browning such as reductones are free radical 

scavengers, which protect peanuts from oxidative damage to proteins, 

phospholipids, nucleic acids, and polysaccharides (Sanders et al., 1993). 

 

Off-flavors Due to Anaerobic Respiration 

    

When peanuts are subjected to cold or heat stress, the respiration process 

changes from aerobic to anaerobic (Singleton and Pattee, 1992, Osborn et al.

1996).  Anaerobic respiration is initiated by an insufficient supply of oxygen diffusing 

into the seed for the increased respiratory need at higher temperatures.  

Temperature stress in peanut seeds can occur at any temperature greater than  

35 °C or less than 4 °C, for example during an abusive curing process.  In addition, 

when cells are exposed to heat or cold stress, membrane damage occurs and 

cellular components can leak, disrupting metabolic processes (Singleton and Pattee, 

1997).   

background image

 

53

    

The results of temperature stress include an increased concentration of 

acetaldehyde and ethanol, which have been linked to off-flavor formation (Singleton 

and Pattee, 1992).  Pattee et al. (1965) reported compounds from high temperature 

cured peanuts for the first time, including: formaldehyde, acetaldehyde, ethanol, 

acetone, isobutyraldehyde, ethyl acetate, butyraldehyde, isovaleraldehyde, 2-methyl 

valeraldehyde, methylbutylketone, and hexaldehyde.  Although some of these 

compounds were found in control peanuts as well, quantitative differences existed; 

in fact, comparison of the concentrations of acetaldehyde and ethyl acetate 

suggested that off-flavors may result from increased concentration in the peanuts 

(Pattee et al., 1965).  Ethyl acetate concentrations increase when ethanol produced 

by anaerobic respiration reacts with carboxylic acids in the plant cells to produce 

esters.  These esters have been commonly associated with flavor production 

(Osborn et al., 1996).  High temperature cured peanuts were also found to have 

increased concentrations of mercaptans, carbon dioxide, basic compounds, and 

carbonyls as temperature increased (Young, 1973). 

    

Other changes in the cell can also be used to index quality damage in 

peanuts due to temperature abuse.  Peanut seed exposed to cold or heat stress 

exhibits an increased efflux of potassium and acetic acid, resulting in an increase of 

conductivity of the leachate.  In addition, photomicrographs of tissue from stressed 

peanuts shows that cells take on an irregular shape, because cellular constituents 

expand in heat-stressed seed (Singleton and Pattee, 1997). 

    

The levels of these marker compounds and amounts of off-flavor production 

are affected by environmental and processing parameters.  Specifically, moisture 

background image

 

54

content has a significant effect.  In a study by Singleton and Pattee (1991), as the 

moisture level of peanuts exposed to freezing temperatures was increased from 6 to 

40%, acetaldehyde and ethanol increased in concentration, to up to 27 times the 

control concentration.  The high moisture peanuts were more susceptible not only to 

freeze damage, but also to heat stress, and also had increased rates of hydrolytic 

reactions.  Even peanuts at 25% moisture were more susceptible to freeze damage, 

and subsequent elevated drying temperatures accentuated the damage (Singleton 

and Pattee, 1991).  In a study by Osborn et al. (1996), seed moisture content as well 

as peanut maturity appeared to influence production rates of acetaldehyde, ethanol, 

and ethyl acetate, although ethyl acetate production rate appeared to be proportional 

to amounts of ethanol produced. 

    

Time and temperature protocols during processing also have an effect.  

During drying of peanuts, formation of acetaldehyde, ethanol, and ethyl acetate did 

not begin right away.  Instead, volatiles increased after 5-15 hours of processing, 

while ethanol concentrations began to decrease after 30-40 hours (Osborn et al.

1996). Procedures for detection of high temperature off-flavors must take into 

account that volatiles diffuse from peanuts during drying.  The concentrations of 

these volatiles after processing depends on the rate of both formation and diffusion 

rates of each volatile, which are affected by seed temperature during drying.  Seed 

temperature has been related to amount of off-flavor produced in the peanuts as 

well.  Likewise, the ratio of acetaldehyde to ethanol to ethyl acetate during the drying 

process was also related to drying air temperature (Osborn et al., 1996). 

background image

 

55

    

Brown et al. (1977) found that the GC peak area ratios of ethanol/methanol 

and ethanol/total volatiles were correlated to taste panel flavor scores, and there 

was a negative correlation between ethanol and roasted flavor (Brown et al., 1977). 

Ethanol, ethyl acetate, and acetaldehyde contribute to an off-flavor in raw peanuts 

which is described as a fermented odor and taste, and this process can be 

monitored using headspace analysis and GLC (Singleton and Pattee, 1992).  

Conversely, the absence of acetaldehyde, ethyl acetate, and ethanol is connected to 

the absence of off-flavor when peanuts are dried under conditions in which 

anaerobic respiration does not develop (Osborn et al., 1996).  In a study by Young 

and Hovis (1990), the descriptive term of abusive drying was correlated to ethanol, 

and "aging" was correlated to 2-methylbutanal and 3-methylbutanal. 

 

Fruity Fermented Off-flavor 

    

Exposure to high temperatures, such as during the curing process, has also 

been correlated to the development of the fruity fermented off-flavor. Reducing 

substances have been shown to contribute fruity fermented off-flavors, and are also 

principle fruit flavors in themselves, such as hydroxyfuranones which contribute to 

pineapple, strawberry and apricot flavors (Vercellotti et al., 1994). The fruity 

fermented off-flavor has been found to increase with a concurrent increase in 

ethanol concentration (Sanders et al., 1989). 

    

The specific compounds causing the fruity fermented off-flavor were 

investigated by Didzbalis et al. (2004).  Using gas chromatography-olfactometry 

(GC-O) and solvent assisted flavor evaporation (SAFE), fruit esters such as ethyl 3-

background image

 

56

methylpropanoate, ethyl 2-methylbutanoate and ethyl 3-methylbutanoate as well as 

increased levels of short chain organic acids such as butanoic acid, hexanoic acid, 

and 3-methylbutanoic acid were found in immature peanuts cured at high 

temperatures, which had the fruity fermented off-flavor.  By adding these compounds 

back to a model system, the short chain organic acids were shown to be responsible 

for the cheesy fermented aroma, while the esters added fruity, apple-like aromas.  

Subsequent processing, such as roasting, increased the levels of short chain 

organic acids by 10- to 40-fold in fruity fermented peanuts (Didzbalis et al., 2004). 

    

In addition to the off-flavor, fruity fermented peanuts have been associated 

with lower levels of the desirable roasted peanutty flavor and sweet aromatic notes.  

Pattee et al. (1989) first noted the impact of the fruity character in suppressing 

roasted peanut flavor.  An inverse linear relationship was found between roasted 

peanut flavor and fruity off-flavor in roasted peanut paste, with a 1:2 decrease / 

increase ratio, respectively.  The fruity off-flavor in peanuts may suppress roasted 

peanut flavor perception, or production of the roasted peanut attribute may be 

reduced due to high-temperature curing (Pattee et al., 1990). 

    

Immature peanuts may be more susceptible to fruity fermented off-flavor 

formation due to the incomplete biosynthesis of primary metabolites.  Furthermore, 

these metabolites will mix and react during cell damage caused by temperature 

stress (Didzbalis et al., 2004).  Threonine, tyrosine, and lysine have been found in 

high concentrations in immature peanuts with high levels of off-flavors, and as a 

result were associated with the production of atypical flavors (Newell et al., 1967).  

Didzbalis et al. (2004) found that while immature peanuts cured at high temperatures 

background image

 

57

exhibited the fruity fermented off-flavor, both mature peanuts cured at high 

temperature and immature peanuts cured at low temperatures were free of the off-

flavor, and had higher roasted peanutty scores as well.  

 

Off-flavors Due to External Contamination 

    

Off-flavors can occur due to outside contamination from many sources, such 

as chlorophenols from the reaction of phenol and chlorine in the water supply or 

from algaecides and fungicides; production of chloroanisoles by microbial activity; 

airborne contaminants due to emissions from nearby industry; contaminated plant 

water used to wash, heat or for reconstitution; pesticides, disinfectants or detergents 

used in proximity of the foodstuff; or from minor constituents of food packaging such 

as closures, can coatings, or lubricants (Reineccius, 1991).  In peanuts, external 

contamination can occur if the peanuts are stored with citrus products (limonene 

contamination), antioxidants are applied (propylene glycol or ethyl hexanoate 

contamination), or insecticides are applied, because these compounds can be 

absorbed by the peanuts (Ory et al., 1992).    

 

Dark Soured Aromatic Off-flavor 

    

The dark soured aromatic off-flavor (DSA) was described by Katz (2002) as a 

new flavor descriptor for an off-flavor formed in peanuts treated at high temperatures 

during microwave blanching. This DSA flavor may be unique to microwave-treated 

peanuts.  However, initial results were inconclusive, as sensory panelists found DSA 

in raw and oven-treated control peanuts as well, possibly due to the panelists’ 

background image

 

58

confusion with painty notes developing during lipid oxidation over storage.  

Development of DSA appears also to be related to temperature.  Treatments 

resulting in highest temperatures (4.7kW for 5.77 min, and 7.3 kW for 2.85 min) had 

significantly more DSA detected in the samples by sensory panel (Katz, 2002). 

 

Methods of Flavor Analysis 

    

The separation of volatile aroma compounds from non-volatile food matrices 

has been a subject of much research.  Great care must be taken during the isolation 

of flavor compounds not only to ensure that the isolates have the sensory properties 

of the foods being studied, but also that heat labile compounds are not destroyed, 

highly volatile compounds are not lost during distillation, or low solubility compounds 

are not lost in extractions (Teranishi, 1998).  Vercellotti et al. (1992) recommended 

using temperatures no higher than 130 °C for half an hour during analysis to prevent 

the production of additional peanut volatiles.  Unfortunately, aroma-active 

compounds in foods have a wide range of chemical properties, such as polarity, 

volatility, and solubility, so it is difficult to choose the best extraction method.  In 

addition, aroma compounds can be present at very low concentrations, even 

femtogram levels, and extractions can be complicated by interference from other 

components of the food matrix (Reineccius, 2002).  

The majority of past methods used to quantify peanut volatiles have involved 

heating large sample sizes and using distillation to separate the volatile compounds 

of the peanut, which caused changes in volatile compound levels, thermal 

conversion of volatiles to other isomers, or loss of volatile compounds during transfer 

background image

 

59

(Pawliszyn, 2000).  Also, the elevated temperatures used during distillation can 

cause the formation of artifacts, such as Maillard or Strecker compounds when 

sugars and free amino acids are present.  While distillation utilizes differences in 

vapor pressure, solvent extractions and chromatography utilize differences of 

distribution equilibria (Teranishi, 1998).  After Dupuy et al. (1971) developed a direct 

GC method to analyze peanut flavor, a database was then developed to establish a 

"normal" peanut volatiles profile of good quality raw peanuts which have few 

breakdown products of lipid peroxidation.  Since the 1950’s, the number of 

compounds characterized for their flavor properties has grown from 500 to 15,000, 

due to the advent of gas and liquid chromatography, infrared, nuclear magnetic 

resonance, and mass spectrometry  (Teranishi, 1998). 

    

Direct sample introduction methods in GC have generally employed 

headspace sampling, in which gas samples at ambient or elevated temperatures are 

drawn off from the headspace of a sample in a gas-tight syringe and injected directly 

into the GC (Waltking and Goetz, 1983).  Headspace techniques target very volatile 

and abundant compounds, which can otherwise be lost during extraction, and these 

techniques can be conducted at very low temperatures to prevent artifact formation 

(Reineccius, 2002).  Headspace techniques can also be beneficial due to speed of 

operation; for example, Young and Hovis (1990) developed a rapid headspace 

method to determine objectionable flavor defects in peanut samples at the rate of 

four per hour.   

    

Sample sensitivity in headspace analysis has been enhanced using dynamic 

headspace or purging techniques (Waltking and Goetz, 1983).  Purge and trap 

background image

 

60

techniques enable the efficient stripping of compound with a high boiling point, and 

reflect the flavor of oil samples to a greater degree than static headspace techniques 

(Ulberth and Roubicek, 1993).  A neutral, nonreactive gas is used to purge the 

sample, and the volatiles are trapped using porous polymer, charcoal, liquid 

nitrogen, or sub-ambient cooling (Waltking and Goetz, 1983). In a study by 

Vercellotti et al. (1992), a sparging device combined with FID and FPD allowed 

simultaneous detection of 18 typical active flavor compounds and 14 sulfur-

containing compounds in peanuts.  A polymer adsorption method involving nitrogen 

flow over peanut samples in a jacketed glass column to a series of Tenax traps was 

used by Buckholz, Jr. et al. (1980b) to collect and quantitate headspace volatiles 

from freshly roasted peanuts.  The results approximated the same ratio of volatiles 

perceived by human senses in the peanut samples.  Although this method reduced 

sample handling and allowed both a larger sample size and shorter extraction time 

(4 hours), the method also resulted in partial loss of some of highly volatile 

compounds.  This was corrected by using three traps in a series (Buckholz Jr. et al.

1980b). 

 

An alternative to purge and trap is SPME (solid phase microextraction), which 

is a volatile extraction method using no organic solvents and relatively low 

temperatures via substituted siloxane coatings attached to a plastic fiber.  The fiber 

partitions molecules in liquid and air matrices (Pawliszyn, 2000). Modified SPME 

methods have been used to analyze volatiles in microwave processing.  For 

example, Roberts and Pollien (1998) designed a method to quantitate aroma 

background image

 

61

compounds eluting from microwave-heated spaghetti, which incorporated a trap and 

condenser to capture volatiles. 

    

Solvent extraction is a technique used to capture higher molecular weight 

compounds than is possible with headspace analyses.  Because water can also be 

co-extracted with the aroma compounds, an additional distillation step is often 

necessary.  The high vacuum transfer (HVT) method is based on the concept of 

transferring volatiles under vacuum between two vessels based on a large 

temperature differential (Engel et al., 1999).  A specialized version of this is the 

solvent assisted flavor evaporation method, or SAFE.  Engel et al. (1999) developed 

the SAFE, which in connection with solvent extraction and a high vacuum pump 

(5x10

-3

 Pa) allows the isolation of volatiles from solvent extracts, food suspensions 

such as fruit pulp, matrices with a high fat content, and aqueous foods such as milk 

or beer.  Engel et al. (1999) developed SAFE to avoid some of the drawbacks of 

HVT, such as: condensation of aroma volatiles with higher boiling points inside 

transfer tubing, limitation to only diethyl ether and dichloromethane extracts due to 

their freezing point, blockage of samples high in fat in the stopcock of the sample 

funnel, as well as the fragility of the system.  Using SAFE, higher boiling point 

alkanes as well as more of the polar odorants such as vanillin, sotolon and 3-

methylbutanoic acid were isolated when compared to HVT.  Furthermore, the use of 

SAFE resulted in higher yields from fatty matrices of 50% fat, compared to high 

vacuum transfer (Engel et al., 1999). Solvent assisted flavor evaporation has been 

used in several applications, including the analysis of volatile compounds in fresh 

milk (Bendall, 2001).   

background image

 

62

    

Selective detectors can be used in GC analysis to enhance sensitivity.  Sulfur 

volatiles such as hydrogen sulfide, carbonyl sulfide, methanethiol, dimethylsulfide, 

carbon disulfide, propanethiol, diethylsulfide, and dimethyl disulfide were identified in 

peanuts by sulfur specific flame photometric detection (Vercellotti et al., 1992). This 

is significant because many sulfur-containing compounds have low thresholds of 

1ppb or less, enabling these compounds to have significant impact on flavor 

perception even at low concentrations (Sanders et al., 1995). 

    

Alternative techniques have also been employed besides traditional 

chromatographic analysis.  Pattee et al. (1990) surveyed the quality of the 1987 

Georgia peanut crop using a headspace volatile concentration (HSVC) test, which 

allows detection of high-temperature off-flavor in wagon lots being graded for 

marketing. Off-flavor volatiles in peanuts have also been measured using the 

organic volatiles meter -- OVM (Osborn et al., 2001). The OVM uses a tin-oxide 

meter to measure total organic volatiles in the sample headspace by change in 

sensor conductivity, with the main volatiles being ethanol, acetaldehyde and ethyl 

acetate (Osborn et al., 2001). Alternatively, electronic nose technology has been 

used to detect off-flavors in peanuts and could differentiate off-flavored, high-

temperature cured and regular ground, unroasted peanut seeds Osborn, et al. 

(2001). 

    

Current methods in the literature for analyzing peanut volatiles were surveyed 

(Table 1): 

background image

 

63

Table 1: Peanut Volatile Analysis by Gas Chromatography 

Method Sample 

preparation  Standard 

Detector

T

initial 

T

final 

Reference 

Static 

Headspace 

30 s grind in coffee mill, 1.5 g in  

10 mL vial, block heated 30 min at 

150 °C. 

external 

standard - 

acetone in water

FID

a

 120 

°C 

200 °C at 20 °C / 

min heating rate, 

T

f

 for 3 min 

Young and 

Hovis, 1990 

 

45-60 s grind in 1s pulses. Heated 

145 °C, 20 min in headspace 

sampler. 1mL headspace gas 

injected. 

external 

standard - 

pyrazines 

MS

b

 35 

°C 

200 °C at 10 °C / 

min heating rate, 

splitless 

Warner et al.

1996 

 

1g oil sample heated 60 min at 

60 °C, 1.25 mL HS

injected. 

external 

standard with 

pentane, 

hexanal,  

2-heptanal 

FID 38 

°C 

170 °C at 6 °C / 

min heating rate, 

1:15 split ratio 

Ulberth and 

Roubicek, 1992

 

1 min grind in coffee mill. Heated 

120 °C for 30 min. 1 mL HS 

injected. 

N/A MS 

50 

°C 

220 °C at 30 °C / 

min heating rate 

Burroni et al.

1997 

 

60 g ground in coffee grinder.  

Heated at 140 °C, 30 min. 

3-heptanone 

(2.0mL of  

0.1mg / mL) 

FID 35 

°C 

300 °C at 15 °C / 

min heating rate 

Rausch, 2002 

 

5 g ground for 8 s, heated at 60 °C 

for 15 min. 

standard 

hexanal solution 

in water added 

to peanuts 

N/A 65 

°C 

N/A  Lee 

et al.

, 2002

 

0.5 g protein.  Heated at 150 °C for 

12 min.  2 mL HS gas injected. 

peaks confirmed 

with standards 

FID 120 

°C 

200 °C at 20 °C / 

min heating rate 

Basha et al.

1998 

SPME 

5 g ground in food processor to 1-2 

mm diameter. Heated in 60 °C 

waterbath for 30 min.  Fiber 

exposed for 15 min. 

external 

standard - 

pyrazines in 

water 

FID 

60 °C, 3 

min 

80 °C, 2 °C / min 

heating rate 

Baker et al.

2003 

Purge and 

Trap 

1g ground peanut placed between 

glass wool into inlet of GC.  

Heated at 130 °C, and stripped 

with nitrogen for 24 min. 

peaks compared 

to known 

standards  

FID 

50 °C, 2 

min 

225 °C, 3 °C / 

min heating rate, 

then held at T

f

 

until 85 min 

Lovegren et al.

1982 

 
 
 
 
 

background image

 

64

Table 1 (continued) 

 

Method Sample 

preparation Standard 

Detector 

T

initial

 

T

final

 Reference 

Purge and 

Trap 

0.5 g peanut, volatiles purged at 

127 °C.  

N/A FID 

N/A N/A 

Crippen et al.

1992 

 

100g sample mixed with 300 mL 

deionized water for 1 min.  

Desorbed in trap at 200 °C. 

2-propanol N/A 

100 

°C 

200 °C at 2 °C 

/ min heating 

rate 

Singleton and 

Pattee, 1992 

 

2.5 g sample, ground for 30s.  

0.5 g sample placed into inlet of 

GC, stripped with nitrogen at 

130 °C for 24 min.  

external 

standards 

FID 50 

°C 

225 °C at 3 °C 

/ min heating 

rate 

Muego et al.

1990 

 

1.25 g peanut paste purged for 

30 min.  Heated at 60 °C with 

nitrogen, then concentrated in 

closed loop. 

N/A FPD

d

 N/A 

N/A 

Crippen et al.

1992 

DNPH 

derivative 

Ground with glycerol and water, 

extracted with methylene 

chloride, evaporated, made into 

2,4-dinitrophenylhydrazone 

derivatives, and carbonyls 

regenerated. 

butanal 
internal 

standard 

FID 100 

°C 

200 °C, 6 °C / 

min heating 

rate 

Mason et al.

1967 

 

a

FID   =   flame ionization detector 

b

MS   =   mass spectrometer detector 

c

HS    =   headspace 

d

FPD  =   flame photometric detector 

 

Gas Chromatography-Mass Spectrometry (GC-MS) 

After separation by GC methods, identification of flavor compounds can be 

accomplished using several methods.  Tentative identifications can be made using 

the retention index and flavor character as noted through GC-O.   To further aid in 

background image

 

65

the identification of volatile compounds, gas chromatography-mass spectrometry 

(GC-MS) has been frequently used in flavor chemistry.  In GC-MS, after the sample 

is volatilized and separated in the GC column, fragments of specific mass and 

charge are created by either electron or chemical ionization techniques.  These ions 

are accelerated and directed to a mass analyzer, where they are separated based 

on their mass/charge ratio.  Each molecule will yield a characteristic fragmentation 

pattern used to identify the molecule, because the concentration of different ions 

formed depends on their stability and bond energies.  Analysis using the MS can 

yield structural information about the molecule, the molecular weight, as well as the 

chemical formula, depending on the type of MS technique used (Ravindranath, 

1989).  

 

Correlation to Quality and Sensory 

    

Flavor volatiles which have been identified in the peanut profile have been 

linked to the positive characteristics as well as the off-flavors found in peanut 

products.  Lovegren et al. (1982) found a good quality peanut to have the following 

volatile profile: free methanol (2 ppm), methanol produced + acetaldehyde (1.5 

ppm), ethanol (1.3 ppm), acetone (0.25 ppm), N-methylpyrrole (0.25 ppm), hexanal 

(0.10 ppm), nonanal (0.10 ppm), total volatiles profile (8 ppm).  Although the color of 

roasted peanuts can be predicted using GC profiles, the characteristic roasted 

peanut flavor note remains unpredictable by instrumental analysis (Ory et al., 1992). 

    

Poor peanut sensory quality has been correlated to a high concentration of 

certain volatiles.  The harsh, green notes of pentanal were shown to have a negative 

background image

 

66

correlation with sensory preference (Buckholz et al., 1980). Young and Hovis (1990) 

related compounds identified by GC-MS to flavor profiles in roasted peanuts: N-

methyl pyrrole was correlated with a musty off-flavor; pentane, acetone, and 

dimethyl sulfide with a musty aftertaste; 2-methylpropanol with fruity; 2-butanone 

with degree of roast; pentanal with tongue or throat burn; and hexanal with beany 

flavor.  Likewise, Vercellotti et al. (1992) monitored sulfur compounds such as 

hydrogen sulfide ("rotten eggs" off-flavor), methyl sulfide (burnt cabbage), dibutyl 

sulfide (rotten onion), dimethyl sulfide (cooked cabbage), dimethyl trisulfide (burnt 

cabbage or onion), allyl sulfide (garlic-like) using FPD detection.  These compounds 

are detectable at thresholds less than 1 ppb, and add positively to the overall 

bouquet at very low concentrations. 

    

 

Gas Chromatography – Olfactometry (GC-O) 

    

Although traditional GC techniques will determine volatile compounds present 

in a sample, only a small percentage of these will be odor-active.  Furthermore, the 

relative amount of a compound in a food does not necessarily equal its sensory 

impact.  This can be due to matrix effects through which the compounds are 

suppressed, but also depends on human thresholds for the compound.  As a result, 

GC-Olfactometry techniques have been used to bridge the gap between analytical 

chemistry and sensory analysis.   

    

The use of GC-Olfactometry was explored in the 1970's (Acree et al., 1976).  

The GC-O technique follows volatile extraction from the product and allows a portion 

of the column effluent to reach a "sniffing" port, while the other portion is routed to 

background image

 

67

the detector.  The compounds can then be identified by aroma descriptors in 

combination with retention indices and identification by GC-MS. The main purpose of 

GC-O is to order the aroma volatiles in a food matrix according to their potential 

importance (Ferreira et al., 2002).  Although it is possible that a flavor may result 

from a single chemical compound, it is more commonly found that the perceived 

flavor is a result of the interaction of several compounds.  For example, Bendall 

(2001) discovered differences in milk flavor caused by concentration differences in a 

set of flavor compounds held in common by the two treatments, rather than selective 

occurrence of compounds uniquely associated with a particular treatment. 

    

The volatiles with the most impact on flavor have been identified using a 

determination of threshold (CHARM or AEDA), measuring the frequency of citations 

and by assessing intensity (OSME), and by cross modality matching (Ferreira et al.

2002).  Both Charm Analysis and AEDA are based on dilution of samples until an 

odor is no longer detectable (Drake and Civille, 2002).   The highest dilution at which 

the odor is still detected is converted to a flavor dilution value (FD) in AEDA, or to a 

Charm value. The charm algorithm gives an estimate of sensory intensity apart from 

the complexities caused by psychological estimation of stimulus intensity (Acree et 

al.

, 1984).  However, these techniques require a large number of samples and 

panelists, making the method time-consuming (Drake and Civille, 2002). 

    

In AEDA (aroma extract dilution analysis), the flavor extract is sequentially 

diluted at a certain rate (usually 2-, 3-, 5-, or 10-fold) and each dilution is analyzed 

by GC-O by a number of judges.  A dilution rate of 10 was shown to be the best by 

simulations although lower dilution rates were advantageous if the compound had a 

background image

 

68

very narrow threshold distribution (Ferreira et al., 2002). Those compounds with a 

higher odor activity value (OAV), which is the ratio of compound concentration to 

threshold value, tend to be more influential in the aroma profile, although some 

compounds can be suppressed by the food matrix (Grosch, 2001).  The FD factor is 

proportional to the OAV of the compound in air.  However, although the FD factor 

and OAV are relative to the concentration of the compound in the extract, they are 

not measures for perceived odor intensity (Grosch, 2001). 

    

OSME is another GC-O method which is commonly used.  Instead of 

dilutions, in OSME, three or more panelists evaluate not only the aroma character, 

but also the aroma intensity over time.  Another technique, which does not involve 

dilutions, is posterior intensity technique.  Two or more trained panelists note aroma 

character as well as maximum perceived intensity (Drake and Civille, 2002). 

    

Additional olfactometry techniques include the NIF/SNIF (nasal impact 

frequency/surface of nasal impact frequency) method.  This method is based on the 

frequency of detection of a compound by untrained panelists.  Only undiluted flavor 

extract is evaluated, so that the method requires fewer GC injections (Drake and 

Civille, 2002).  However, this method does not differentiate between compounds 

which are far above threshold levels from those barely detectable, but instead 

assigns importance to a compound based on the proportion of panelists which can 

detect it.  Although all GC-O methods have their weaknesses, they perform the 

same general function to select key odorants which may have the most impact on 

the flavor profile (Noble, 2002). 

 

 

background image

 

69

GC-O Applications 

 

    

High vacuum distillation (HVT), GC-O, and AEDA were used to evaluate the 

volatile components of nonfat dry milks subjected to varying heat treatments 

(Karagul-Yuceer et al., 2001).  HVT, GC-O, and AEDA were also used to evaluate 

the typical aroma components of British Farmhouse Cheddar cheese (Suriyaphan et 

al.

, 2001).  Aroma extract dilution analysis and GC-O were used to analyze volatiles 

created during coffee roasting (Czerny and Grosch, 2000).  In peanut research, GC-

O was used to generate "aromagrams" correlating odors and peak identities from 

GC analysis of roasted peanuts (Vercellotti et al., 1992b).  Likewise, Matsui et al

(1998) used AEDA through GC-O on headspace samples to identify 2-ethyl-3,5-

dimethylpyrazine, 2,3-diethyl-5-methylpyrazine and 1-penten-3-one to have the 

highest flavor dilution factors in commercially processed peanut oil. 

    

After linking analytical data with sensory data through GC-Olfactometry 

techniques, threshold analysis can be conducted to gauge human perception of 

these compounds.  To correlate with sensory, compounds found by chromatographic 

analysis must exceed human thresholds.  For example, the compounds 

methylpropanal, methylbutanal, N-methylpyrrole, hexanal, hexanol, 2-pentylfuran, 

vinylphenol, and decadienal were determined to have thresholds below the levels 

found by FID in roasted peanuts, and therefore will have an effect on the flavor 

(Vercellotti et al., 1992). 

A final step might include the addition of specific compounds into a 

deodorized model system, to analyze creation of the flavor note.  A model is created 

that matches the original sample aroma, and this can be the starting material for 

background image

 

70

omission experiments to further define the compounds which contribute to the flavor 

profile (Grosch, 2001).  There are many reasons why a model may not accurately 

represent the sample, including the omission of odorants which are only detectable 

in the food by GC-O but not by other GC detectors, or incorrect quantitative data 

(Grosch, 2001). 

In recent years, the shift of emphasis in flavor chemistry has been to the 

correlation of chemical structures to sensory characteristics, and to the study of the 

biological activities of the compounds (Teranishi, 1998).  As a result, if the chemical 

causes of positive flavors as well as off-flavors can be identified, they can also 

potentially be controlled. 

 

Sensory Evaluation 

    

The perception of peanut flavors involves the gustatory system to detect basic 

tastes of sweet, salty, sour, and bitter stimuli which react with taste receptors in the 

taste buds; the olfactory system to perceive volatiles which access receptors in the 

roof of the nasal cavity; and the trigeminal system, which responds to stimuli of heat, 

astringency, acridness, and pungency (Sanders et al., 1993).  While the range of 

concentrations perceived in tasting is typically less than 10

4

, volatiles can be 

detected by the olfactory system in a range of concentration of 10

12

 (Sanders et al.

1993). 

    

The first sensory method accepted for quality evaluation of peanuts was the 

Critical Laboratory Evaluation of Roasted Peanuts (CLER) method (Holaday, 1971). 

In the CLER method, 20 halves of peanuts were selected from a 300g sample, and 

background image

 

71

each half was allocated into one of four categories: badly off-flavor, low level off-

flavor, low peanut flavor, or good peanut flavor.  The CLER score was found by 

calculating the number of peanuts in each category (St. Angelo, 1996).  This method 

has been criticized for using a single continuum for quality and hedonic responses 

(Sanders et al., 1995).  As a result, the CLER score only indirectly reflects the 

roasted flavor of a sample as it mixed hedonic ratings with roast level (Johnsen et 

al.

, 1988).   

    

A lexicon for roasted peanut flavor was developed by Oupadissakoon and 

Young (1984).   A lexicon is a set of words used to describe the flavor of a product 

(Drake and Civille, 2003).  Lexicons are used to provide a means of communication 

within an industry.  Researchers use the lexicon to associate flavors with treatment 

variables, growers and processors use the lexicon to communicate quality issues, 

and manufacturers can use the lexicon to communicate with suppliers and the 

consumer (Johnsen et al., 1988).  Lexicons can be used to correlate instrumental 

data, product development, shelf life, quality control and basic research.  A well-

developed lexicon will be discriminatory, representative of a wide range of samples, 

defined and unambiguous, composed of nonredundant terms, can be related to 

instrumental data and consumer perceptions, and contains references for all terms 

(Drake and Civille, 2003). 

    

It was suggested that the lexicon by Oupadissakoon and Young (1984) 

lacked terms to separate the different degrees of roast in peanuts often present in a 

lot (Johnsen et al., 1988).  In 1985, Syarief et al. also developed a lexicon for 

roasted peanuts as well as peanut butter, using "oxidized", "mold", "earthy", and 

background image

 

72

"petroleum'" as terminology for off-flavors.  A lexicon was later developed to address 

deficiencies in earlier attempts such as lack of differentiation in oxidized off-flavors 

and lack of sweet/caramel descriptors (Johnsen et al., 1988). 

    

The lexicon of peanut flavor descriptors that was developed by Johnsen et al. 

(1988) can be found in Table 2.  A ten point scale was established to rate intensity of 

flavor, using flavor intensities of commercially available products.  For example, on a 

scale of 0-10, the sodium carbonate in saltine crackers was rated an intensity of 2, 

the apple flavor in Motts apple juice was an intensity of 4, orange in Minute Maid 

orange juice was an intensity of 6, grape in Welch's grape juice was an intensity of 8, 

and cinnamon in Big Red gum was an intensity of 10 (Johnsen et al., 1988).  The 

terminology has been modified and improved over the years, including the addition 

of a "fruity" descriptor associated with high temperature curing (Sanders et al.

1989).   

 

Table 2: Lexicon of Peanut Flavor Descriptors (Johnsen et al., 1988). 

 

Aromatics 

Roasted Peanutty 

The aromatic associated with medium-roast peanuts 

(about 3-4 on USDA color chips) and having fragrant 

character such as methyl pyrazine 

 

Raw Bean / Peanutty 

The aromatic associated with light-roast peanuts 

(about 1-2 on USDA color chips) and having legume-

like character (specify bean or pea if possible) 

 

Dark Roasted Peanut 

The aromatic associated with dark roasted peanuts (4+ 

on USDA color chips) and having very browned or 

toasted character 

 Sweet 

Aromatic 

The aromatics associated with sweet material such as 

caramel, vanilla, molasses, fruit (specify type) 

 

 

background image

 

73

Table 2 (continued) 

 Woody/Hulls/Skins

The aromatics associated with base peanut character 

(absence of fragrant top notes) and related to dry wood, 

peanut hulls, and skins 

 Cardboard 

The aromatic associated with somewhat oxidized fats and 

oils and reminiscent of cardboard 

 

Painty 

The aromatic associated with linseed oil, or oil based paint 

 Burnt 

The aromatic associated with very dark roast, burnt 

starches, and carbohydrates (burnt toast or espresso 

coffee) 

 Green 

The aromatic associated with uncooked vegetables/grass 

twigs, cis-3-hexanal 

 Earthy 

The 

aromatic 

associated with wet dirt and mulch 

 Grainy 

The aromatic associated with raw grain (bran, starch, corn, 

sorghum) 

 Fishy 

The aromatic associated with trimethylamine, cod liver oil, 

or old fish 

 Chemical/Plastic 

The 

aromatic 

associated with plastic and burnt plastics 

 Skunky/Mercaptan

The aromatic associated with sulfur compounds, such as 

mercaptan, which exhibit skunk-like character 

Tastes 

Sweet 

The taste on the tongue associated with sugars 

 

Sour 

The taste on the tongue associated with acids 

 

Salty 

The taste on the tongue associated with sodium ions 

 

Bitter 

The taste on the tongue associated with bitter agents such 

as caffeine or quinine 

Chemical 

Feeling 

Factors 

Astringent 

The chemical feeling factor on the tongue, described as 

puckering/dry and associated with tannins or alum 

 Metallic 

The chemical feeling factor on the tongue described as flat, 

metallic and associated with iron and copper 

 

 

background image

 

74

Descriptive Sensory Analysis 

    

Evaluating flavor by descriptive analysis separates the overall flavor character 

of a product into its components.  These components are precisely defined and 

referenced during training of the panelists (Lawless and Heymann, 1999).  The 

panelists evaluate the impact of each flavor component using a defined scale, on 

which they have been trained to distinguish the range of intensities (Lawless and 

Heymann, 1999).  

    

To develop the descriptors for the food product, a trained panel leader 

presents a range of samples that includes typical flavors and off-flavored samples.  

Discussion among the panelists is guided to develop descriptive terms.  Definitions 

and references are defined for all terms, and subsequent analyses are used to 

eliminate redundant terms and to further develop the final list which will be used for 

sample analysis (Drake and Civille, 2003).   

    

The first trained descriptive analysis panel for roasted peanut flavor was 

established at North Carolina’s Tate University in 1975.  The panel used 14 

character notes and three categories including aroma, flavor-by-mouth, and 

aftertaste (Sanders et al., 1995).  However, the development of descriptive sensory 

analysis began much earlier.  The Flavor Profile Method was developed in the 

1950's by Arthur D. Little.  This method involved a small panel of highly trained 

experts which evaluated samples as a group using a four point scale.  Although this 

method was very sensitive, the technical language used was difficult at times to 

interpret.  In the 1960's, General Foods developed the Texture Profile Method, which 

involved at least ten panelists and a scale anchored with specific food references.  

background image

 

75

Givaudan-Roure developed Quantitative Flavour Profiling in the 1990's.  The method 

is distinguished by its extensive use of references, making the results easier to 

compare between labs and over time.  A panel of experts is utilized to characterize 

flavors, using nonambiguous technical language (Murray et al., 2001).   

    

One of the most common techniques in descriptive sensory analysis used 

today is QDA, or Quantitative Descriptive Analysis.  QDA involves a panel of 10-12 

people, and a panel leader which is not actively involved in the evaluation.  In QDA, 

the subject marks a line scale at the perceived intensity.  The line scale is anchored 

on each end but has no interval numbers or labels, with the possible exception of the 

reference.  It is not essential that each judge uses the same segment of the scale, 

but rather that performance is consistent (Stone et al., 1974).  Although the data 

must be measured by hand, this type of scale may eliminate central tendency in the 

subjects.  QDA is usually linked to product-specific scaling, in which scoring is 

relative to other samples.  Although the panelist training does not need to be as 

extensive as in other methods of descriptive analysis, the product-specific scaling 

makes comparisons with other panels difficult.  The key elements of the QDA 

technique include: formal statistical testing for reliability, development of a language 

by the group under a panel administrator’s leadership, subject selection based on 

performance, repeated judgements to monitor panel performance, relatively short 

subject training time, data collection using coded samples, and the use of analysis of 

variance and principle component analysis to evaluate data (Stone et al., 1974).   

The Spectrum technique, developed by Gail Civille in 1970s, is also 

commonly used today.  The Spectrum technique is based on a complete and 

background image

 

76

detailed description of the sensory characteristics of a sample both in qualitative and 

quantitative aspects, by a panel consisting of 12-15 members.  The trained panel 

uses a 15-point category scale, which is marked at regular intervals with numbers or 

words.  More extensive training is needed to train the panel in the use of a category 

scale, but it is a universal scaling technique which can be easily applied to other 

products.  This method is also differentiated by its extensive use of references 

(Drake and Civille, 2003). 

    

A final technique that is also used is Free Choice Profiling.  In this method, 

consumers generate their own terms to describe samples.  Although it may be 

harder to interpret data as a result, the consumers may find novel ways to 

differentiate products, and the data will also reflect consumers' perception of the 

product (Murray et al., 2001). 

 

Project Objectives  

Using these techniques of descriptive sensory analysis and chemical 

techniques such as GC-O and GC-MS, the flavor profile of peanuts can be 

characterized.  Specifically, the off-flavors which may form during high temperature 

microwave blanching can be linked to their causative chemical compounds.  The 

objectives of this study were to characterize the processing parameters best suited 

for the microwave blanching of peanuts, to identify the conditions under which the 

off-flavor occurs, and to analyze this off-flavor using descriptive sensory analysis 

and chemical analysis.  Through this project, the causes of the off-flavor formed 

background image

 

77

during high temperature microwave blanching could be determined and thereby 

possibly prevented, allowing the adoption of this alternative blanching process.   

background image

 

78

Abbreviations 

 

AEDA  

Aroma extract dilution analysis 

CLER  

Critical laboratory evaluation of roasted peanuts 

DNPH  

2,  4-dinitrophenylhydrazine 

DSA   

Dark soured aromatic 

FD 

 

Flavor dilution factor 

FID   

Flame ionization detector 

FPD   

Flame photometric detector 

g   Gram 

GLC  

Gas 

liquid 

chromatography 

GC  

Gas 

chromatography 

GC-MS 

Gas chromatography-mass spectrometry 

GC-O  

Gas chromatography-olfactometry 

HSVC  

Headspace volatile concentration test 

HVT   

High vacuum transfer 

IR   Infrared 

spectroscopy 

L   Liter 

m   Meter 

min  

Minute 

MS  

Mass 

spectrometry 

NIF   

Nasal impact frequency 

OSI   

Oxidative stability index 

background image

 

79

OVM   

Organic volatiles meter 

Pa  

Pascal 

ppb   

Parts per billion 

ppm  

Parts 

per 

million 

PV    

Peroxide value 

QDA   

Quantitative descriptive analysis 

s   Second 

SAFE  

Solvent assisted flavor evaporation 

SNIF   

Surface of nasal impact frequency 

SPME  

Solid phase microextraction 

TBA   

Thiobarbituric acid analysis 

US  

United 

States 

USDA  

United States department of agriculture 

UV  

Ultraviolet 

spectroscopy 

w.b.  

Wet 

basis 

 

background image

 

80

Symbols 

 

ε 

 

Relative complex permittivity 

ε'  

 

Relative real permittivity (dielectric constant) 

ε"  

 

Relative dielectric loss factor 

c

dry

    

Specific heat of dry seeds (1.880 kJ / (kg °C)) 

c

w

  

 

Specific heat of water (4.187 kJ/(kg °C)) 

γ

dry  

 

Bulk density of dry seeds (kg/m

3

h

lg

  

 

Heat of vaporization of water (2.418 x 104 kJ/kg at 35°C) 

j   Imaginary 

unit 

mc

f

    

Final seed moisture content (w.b.) 

mc

i  

 

Initial seed moisture content (w.b.) 

 

Energy per unit volume (kJ/m

3

T

i

 

 

Initial temperature (°C) 

T

f

 

 

Final temperature (°C) 

background image

 

81

References 

 
Abegaz EG, Kerr WL, Koehler PE.  2004.  The role of moisture in flavor changes  
   of model peanut confections during storage.  Lebensmittel Wissenschaft und  
   Technologie 37(2):  215-225. 
 
Acree TE, Barnard J, Cunningham DG.  1984.  A procedure for the sensory     
   analysis of gas chromatographic effluents.  Food Chemistry 14: 273-286. 
 
Acree TE, Butts RM, Nelson RR, Lee CY.  1976.  Sniffer to determine the odor of  
   gas chromatographic effluents.  Analytical Chemistry 48(12): 1821-1822. 
 
Adelsberg GD, Sanders TH.  1997.  Effect of peanut blanching protocols on bed  
   and seed temperatures, seed moisture, and blanchability.  Peanut Science 24:   
   42-46. 
 
Ahmed EM, Young CT.  1982.  Composition, quality, and flavor of peanuts. In:  
   Pattee HE, Young CT, editors. Peanut Science and Technology. Yoakum,  
   Texas: American Peanut Research and Education Society.  p 655-688. 
 
Baker GL, Cornell JA, Gorbet DW, O'Keefe SF, Sims CA, Talcott ST. 2003.  
   Determination of pyrazine and flavor variations in peanut genotypes during  
   roasting.  Journal of Food Science 68(1): 394-400. 
 
Basha SM, Ying M, Vives MR, Young CT, Boyd LC. 1998. Fractionation and  
   characterization of a protein fraction producing off-flavor volatiles in peanut  
   seed.  Journal of Agricultural Food Chemistry 46: 2130-2135. 
 
Basha SM, Young CT.  1996.  Protein fraction producing off-flavor headspace  
   volatiles in peanut seed.  Journal of Agricultural Food Chemistry 44: 3070- 
   3074. 
 
Bendall JG.  2001.  Aroma compounds of fresh milk from New Zealand cows fed  
   different diets.  Journal of Agricultural and Food Chemistry 49: 4825-4832. 
 
Boldor D, Sanders TH, Simunovic J.  2004.  Dielectric properties of in-shell and  
   shelled peanuts at microwave frequencies.  Transactions of the ASAE 47(4):     
   1159-1169. 
 
Boldor D, Sanders TH, Swartzel KR, Farkas BE.  2005.  A model for temperature  
   and moisture distribution during continuous microwave drying.  Journal of Food  
   Process Engineering 28(1):  68-87. 
 
Brown ML, Wadsworth JI, Dupuy HP.  1977.  Correlation of volatile components  
   of raw peanuts with flavor score.  Peanut Science 4: 54-56. 
 

background image

 

82

Buckholz LL Jr., Daun H, Stier E, Trout R.  1980.  Influence of roasting time on  
   sensory attributes of fresh roasted peanuts.  Journal of Food Science 45: 547- 
   554. 
 
Buckholz LL Jr., Withycombe DA, Daun H.  1980b.  Application and  
   characteristics of polymer adsorption method used to analyze flavor volatiles  
   from peanuts. Journal of Agricultural and Food Chemistry 28: 760-765. 
 
Burroni LV, Grosso NR, Guzman CA. 1997. Principal volatile components of raw  
   roasted, and fried Argentinean peanut flavors. Journal of Agricultural Food  
   Chemistry 45: 3190-3192. 
 
Cammarn SR, Lange TJ, Beckett GD. 1990.  Continuous fluidized bed roasting.   
   Chemical Engineering Progress 86: 40-46. 
 
Chiou RY-Y, Chang Y-S, Tsai T-T, Ho S.  1991.  Variation of flavor-related  
   characteristics of peanuts during roasting as affected by initial moisture  
   contents.  Journal of Agricultural and Food Chemistry 39: 1155-1158. 
 
Chung TY, Eiserich JP, Shibamoto T.  1993.  Volatile compounds identified in  
   headspace samples of peanut oil heated under temperatures ranging from 50  
   to 200 °C.  Journal of Agricultural and Food Chemistry 41: 1467-1470. 
 
Crippen KL, Vercellotti JR, Lovegren NV, Sanders TH. 1992. Defining roasted  
   peanut flavor quality. Part 2. Correlation of GC volatiles and sensory flavor  
   attributes. In: Charalambous G, editor. Food Science and Human Nutrition.   
   New York:  Elsevier Science Publishers.  p 211-227. 
 
Cruickshank AW, Tonks JW, Kelly AK.  2003.  Blanchability of peanut (Arachis  
   hypogaea L.) kernels: early generation selection and genotype stability over  
   three environments.  Australian Journal of Agricultural Research 54(9): 885- 
   888. 
 
Czerny M, Grosch W.  2000.  Potent odorants of raw Arabica coffee: their  
   changes during roasting.  Journal of Agricultural and Food Chemistry 48: 868- 
   872. 
 
Delwiche SR, Shupe WL, Pearson JL, Sanders TH, Wilson DM.  1986.   
   Microwave vacuum drying effect on peanut quality.  Peanut Science 13: 21-27. 
 
DiCesare LF, Riva M, Schiraldi A.  1992.  Improved retention of mushroom flavor  
   in microwave-hot air drying.  In: Charalambous G, editor.  Developments in  
   Food Science v. 29: Food Science and Human Nutrition. Amsterdam, The  
   Netherlands: Elsevier Science Publishers.  p 249-256. 
 
Didzbalis J, Ritter KA, Trail AC, Plog FJ.  2004.  Identification of fruity/fermented  

background image

 

83

   odorants in high temperature cured roasted peanuts.  Journal of Agricultural  
   and Food Chemistry 52:  4828-4833. 
 
Dimick PS.  1994.  Peanut flavor-fade research report.  The Manufacturing  
   Confectioner 74(1): 45-48. 
 
Drake MA, Civille GV.  2003.  Flavor lexicons.  Comprehensive Reviews in Food  
   Science and Food Safety 1: 33-40. 
 
Engel W, Bahr W, Schieberle P.  1999.  Solvent assisted flavour evaporation - a  
   new and versatile technique for the careful and direct isolation of aroma  
   compounds from complex food matrices.  European Food Research and  
   Technology 209: 237-241. 
 
Engelder DS, Buffler CR.  1991.  Measuring dielectric properties of food products  
   at microwave frequencies.  Microwave World 12(2):  2-11. 
 
Ferreira V, Petka J, Aznar M.  2002.  Aroma extract dilution analysis: precision  
   and optimal experimental design. Journal of Agricultural and Food Chemistry  
   50: 1508-1514. 
 
Giese J.  1992.  Advances in microwave food processing.  Food Technology  
   46(9): 118-123. 
 
Grosch W.  2001.  Evaluation of the key odorants of foods by dilution  
   experiments, aroma models and omission.  Chemical Senses 26(5):  533-45. 
 
Ho C-T, Lee M-H, Chang SS.  1981.  Isolation and identification of volatile  
   compounds from roasted peanuts.  Journal of Food Science 47: 127-133. 
 
Hoffpauir CL.  1953.  Peanut composition: relation to processing and utilization.   
   Agricultural and Food Chemistry 1(10): 668-671. 
 
Holaday CE.  1971.  Report of the peanut quality committee.  Journal of  
   American Peanut Reseach and Education Association 3: 238-241. 
 
Jambunathan R, Sridhar R, Raghunath K, Dwivedi SL, Nigam SN.  1993.  Oil  
   quality characteristics and headspace volatiles of newly released groundnut  
   (Arachis hypogaea L) cultivars.  Journal of the Science of Food and Agriculture  
   61: 23-30. 
 
Johnsen PB, Civille GV, Vercellotti JR, Sanders TH, Dus CA.  1988.  
   Development of a lexicon for the description of peanut flavor.  Journal of  
   Sensory Studies 3: 9-17. 
 
Johnson BR, Waller GR, Burlingame AL.  1971.  Volatile components of roasted  

background image

 

84

   peanuts: basic fraction.  Journal of Agricultural and Food Chemistry 19(5):  
   1020-1024. 
 
Johnson BR, Waller GR, Foltz RL.  1971b.  Volatile components of roasted  
   peanuts: neutral fraction. Journal of Agricultural and Food Chemistry 19(5):  
   1025-1027. 
 
Karagul-Yuceer Y, Drake M, Cadwallader KR.  2001.  Aroma-active components  
   of nonfat dry milk.  Journal of Agricultural and Food Chemistry 49: 2948-2953. 
 
Katz TA.  2002. The effect of microwave energy on roast quality of microwave  
   blanched peanuts. Master's Thesis, North Carolina State University, Raleigh,  
   NC. 
 
Koehler PE, Odell GV.  1970.  Factors affecting the formation of pyrazine  
   compounds in sugar-amine reactions.  Journal of Agricultural and Food  
   Chemistry 18(5): 895-898. 
 
Lawless HT, Heymann H.  1999.  Sensory evaluation of food: principles and  
   practices. New York: Chapman & Hall. 827p. 
 
Lee MH.  1980.  Studies on roasted peanuts and peanut butter flavor.   
   Dissertation Abstracts International B 40(12):  5598. 
 
Lee S-Y, Trezza TA, Guinard J-X, Krochta JM. 2002. Whey-protein-coated  
   peanuts assessed by sensory evaluation and static headspace gas  
   chromatography. Journal of Food Science 67(3): 1212-1218. 
 
Leunissen M, Davidson VJ, Kakuda Y. 1996. Analysis of volatile flavor  
   compounds in roasted peanuts using supercritical fluid extraction and gas  
   chromatography-mass spectrometry. Journal of Agricultural Food Chemistry  
   44: 2694-2699. 
 
Lovegren NV, Vinnett CH, St. Angelo AJ. 1982. Gas chromatographic profile of  
   good quality raw peanuts. Peanut Science 9: 93-96. 
 
Mason ME, Johnson B.  1966.  Flavor components of roasted peanuts: some low  
   molecular weight pyrazines and a pyrrole. Journal of Agricultural and Food   
   Chemistry 14(5): 454-460. 
 
Mason ME, Johnson B, Hamming MC.  1967. Volatile components of roasted  
   peanuts: the major monocarbonyls and some noncarbonyl components.  
   Journal of Agricultural Food Chemistry 15(1): 66-73. 
 
Mason ME, Newell JA, Johnson BR, Koehler PE, Waller GR.  1969.  Nonvolatile  
   flavor components of peanuts.  Journal of Agricultural and Food Chemistry  

background image

 

85

   17(4): 728-732. 
 
Mason ME, Waller GR.  1964.  Isolation and localization of the precursors of  
   roasted peanut flavor.  Agricultural and food chemistry 12(3): 274-278. 
 
Matsui T, Guth H, Grosch W.  1998.  A comparative study of potent odorants in  
   peanut, hazelnut, and pumpkin seed oils on the basis of aroma extract dilution  
   analysis (AEDA) and gas chromatography-olfactometry of headspace samples  
   (GCOH).  Fett/Lipid 100(2):  51-56. 
 
McNeill KL, Sanders TH.  1998.  Maturity effects on sensory and storage quality  
   of roasted Virgnia-type peanuts.  Journal of Food Science 63(2):  366-369. 
 
McWatters KH, Cherry JP.  1982.  Potential food uses of peanut seed proteins.  
   In: Pattee HE, Young CT, editors.  Peanut Science and Technology. Yoakum,   
   Texas: American Peanut Research and Education Society. p 689-736. 
 
Megahed MG.  2001.  Microwave roasting of peanuts: effects on oil  
   characteristics and composition.  Nahrung/Food 45:  255-257. 
 
Mudgett RE.  1986.  Scientific Status Summary: Microwave Food Processing.    
   Food Technology 43:117-126. 
 
Murray JM, Delahunty CM, Baxter IA.  2001.  Descriptive sensory analysis: past,  
   present, and future.  Food Research International 34: 461-471. 
 
Newell JA, Mason ME, Matlock RS.  1967.  Precursors of typical and atypical - 
   roasted peanut flavor.  Journal of Agricultural and Food Chemistry (5): 767- 
   772. 
 
Noble AC.  2002.  Sensory methods of flavour analysis.  In:  Taylor AJ, editor.   
   Food Flavor Technology.  Sheffield, England:  Sheffield Academic Press. p  
   252-271. 
 
Ory RL, Crippen KL, Lovegren NV.  1992.  Off-flavors in peanuts and peanut  
   products. In: Charalambous G, editor.  Developments in Food Science v. 29:  
   Off-Flavors in Foods and Beverages. Amsterdam, The Netherlands: Elsevier  
   Science Publishers. p 57-75. 
 
Osborn GS, Lacey RE, Singleton JA.  2001.  A method to detect peanut off- 
   flavors using an electronic nose.  Transactions of the ASAE 44(4): 929-938. 
 
Osborn GS, Young JH, Singleton JA.  1996.  Measuring the kinetics of  
   acetaldehyde, ethanol, and ethyl acetate within peanut kernels during high    
   temperature drying. Transactions of the ASAE 39(3): 1039-1045. 
 

background image

 

86

Pattee HE, Beasley EO, Singleton JA.  1965.  Isolation and identification of  
   volatile components from high-temperature-cured off-flavor peanuts.  Journal of  
   Food Science 30: 388-392. 
 
Pattee HE, Rogister EW, Giesbrecht FG.  1989.  Interrelationships between  
   headspace volatile concentration, selected seed-size categories and flavor in  
   large-seeded Virginia-type peanuts.  Peanut Science 16: 38-42.   
 
Pattee HE, Singleton JA.  1971. Observations concerning blanching and storage  
   effects on the volatile profile and flavor of peanuts.  Journal of the American  
   Peanut Research and Education Association 3: 189-194. 
 
Pattee HE, Singleton JA, Cobb WY.  1969.  Volatile components of raw peanuts:  
   analysis by gas liquid chromatography and mass spectrometry.  Journal of  
   Food Science 34(6):  625-7. 
 
Pattee HE, Yokoyama WH, Collins MF, Giesbrecht FG.  1990.  Interrelationships  
   between headspace volatile concentration, marketing grades, and flavor in  
   runner-type peanuts.  Journal of Agricultural Food Chemistry 38: 1055-1060. 
 
Pattee HE, Young CT, Pearson JL, Singleton JA, Giesbrecht FG.  1982.  Storage  
   and moisture effects on peanut composition and roasted flavor.  Peanut  
   Science 9(2):  98-101. 
 
Paulsen MR, Brusewitz GH.  1976.  Coefficient of cubical thermal expansion for  
   Spanish peanut kernels and skins.  Transactions of the ASAE 19(3): 592-595,  
   600. 
 
Ramesh MN, Wolf W, Tevini D, Bognar A.  2002.  Microwave blanching of  
   vegetables.  Journal of Food Science 67(1):  390-398. 
 
Rausch TD, Sanders TH, Hendrix KW, Drozd JM.  2005.  Effect of microwave  
   energy on blanchability and shelf life of peanuts.  Journal of Agricultural and  
   Food Chemistry, submitted. 
 
Ravindranath B.  1989.  Principles and practice of chromatography.  New York:   
   Halstead Press.  502p. 
 
Reineccius G.  1991.  Off-flavors in foods.  Critical Reviews in Food Science and  
   Nutrition 29(6): 381-402. 
 
Reineccius, G.  2002.  Instrumental methods of analysis.  In:  Taylor AJ, editor.   
   Food Flavor Technology.  Sheffield, England:  Sheffield Academic Press. p  
   210-251. 
 
Roberts DD, Pollien P.  1998.  Relationship between aroma compounds'  

background image

 

87

   partitioning constants and release during microwave heating.  In: Mussinan CJ,  
   Morello MJ, editors.  Flavor Analysis: Developments in Isolation and  
   Characterization. Washington DC: American Chemical Society. p 61-68 
 
Ryynanen S.  1995.  The electromagnetic properties of food materials: a review  
   of the basic principles.  Journal of Food Engineering 26: 400-429. 
 
St. Angelo AJ.  1996.  Lipid oxidation in foods. Critical Reviews in Food Science  
   and Nutrition 36(3): 175-224. 
 
St. Angelo AJ, Kuck JC, Hensarling TP, Ory RL.  1977.  Effects of water and spin  
   blanching on oxidative stability of peanuts.  Journal of Food Processing and   
   Preservation 1: 249-260. 
 
St. Angelo AJ, Lovegren NV, Vinnett CH.  1984.  Volatile "fingerprint" profile of  
   raw peanuts as an indicator of quality.  Peanut Science 11: 40-42. 
 
Sanders TH.  1989.  Maturity distribution in commercially sized Florunner  
   peanuts.  Peanut Science 16: 91-95. 
 
Sanders TH, Adelsberg GD, Hendrix KW, McMichael Jr. RW.  1999.  Effect of  
   blanching on peanut shelf-life.  Peanut Science 26: 8-13. 
 
Sanders TH, Blankenship PD, Vercellotti JR, Crippen KL.  1990.  Interaction of  
   curing temperature and inherent maturity distributions on descriptive flavor of  
   commercial grade sizes of Florunner peanuts.  Peanut Science 17: 85-89. 
 
Sanders TH, Pattee HE, Vercellotti JR, Bett KL.  1995. Advances in peanut flavor  
   quality. In: Pattee HE, Stalker HT, editors. Advances in Peanut Science.   
   Stilwater, OK: American Peanut Research and Education Society, Inc. p 528- 
   553. 
 
Sanders TH, Vercellotti JR, Blankenship PD, Crippen KL, Civille GV.  1989a.   
   Interaction of maturity and curing temperature on descriptive flavor of peanuts.   
   Journal of Food Science 54(4): 1066-1069. 
 
Sanders TH, Vercellotti JR, Crippen KL, Civille GV.  1989b.  Effect of maturity on  
   roast color and descriptive flavor of peanuts.  Journal of Food Science 54(2):  
   475-477. 
 
Sanders TH, Vercellotti JR, Crippen KL, Hinsch RT, Rasmussen GK, Edwards  
   JH.  1992.  Quality factors in exported peanuts from Argentina, China, and the  
   United States.  JAOCS 69(10): 1032-1035. 
 
Sanders TH, Vercellotti JR, Grimm DT.  1993.  Shelf life of peanuts and peanut  
   products.  In: Charalambous G, editor.  Shelf Life Studies of Foods and  

background image

 

88

   Beverages. Amsterdam, The Netherlands: Elsevier Science Publishers. p 289- 
   309. 
 
Sevirini C, Baiano A, Pilli T.  2003.  Microwave blanching of cubed potatoes.   
   Journal of Food Processing and Preservation 27(6):  475-491. 
 
Singleton JA, Pattee HE.  1991.  Peanut moisture/size, relation to freeze damage  
   and effect of drying temperature on volatiles.  Journal of Food Science 56(2):   
   579-581. 
 
Singleton JA, Pattee HE.  1992.  Maturity and storage affect freeze damage in  
   peanuts.  Journal of Food Science 57(6): 1382-1384. 
 
Singleton JA, Pattee HE.  1997.  Effects of cold and heat stress on the chemistry  
   and cell structure of peanut seeds.  Peanut Science 24: 32-37. 
 
Smith JS Jr, Blankenship PD, McIntosh FP.  1995.  Advances in peanut handling,  
   shelling and storage from farmer stock to processing.  In: Pattee HE, Stalker  
   HT, editors. Advances in Peanut Science.  Stilwater, OK: American Peanut  
   Research and Education Society, Inc. p 500-527. 
 
Stone H, Sidel J, Oliver S, Woolsey A, Singleton RC.  1974.  Sensory evaluation  
   by quantitative descriptive analysis.  Food Technology 28(11): 24, 26, 28-29,  
   32, 34. 
 
Suriyaphan O, Drake MA, Chen XQ, Cadwallader KR.  2001.  Characteristic  
   aroma components of British Farmhouse Cheddar cheese.  Journal of  
   Agricultural and Food Chemistry 49: 1382-1387. 
 
Teranishi R.  1998.  Challenges in flavor chemistry: an overview. In: Mussinan  
   CJ, Morello MJ, editors.  Flavor Analysis: Developments in Isolation and  
   Characterization. Washington DC: American Chemical Society.  p 61-68. 
  
Trabelsi S, Nelson SO.  2004.  Microwave dielectric properties of shelled and  
   unshelled peanuts.  Transactions of the ASAE 47(4):  1215-1222. 
 
Trabelsi S, Nelson SO.  2006. Nondestructive sensing of bulk density and  
   moisture content in shelled peanuts from microwave permittivity  
   measurements.  Food Control 17(4):  304-311. 
 
Troeger JM.  1982.  Peanut drying energy consumption - a simulation analysis.   
   Peanut Science 9: 40-44. 
 
Ulberth F, Roubicek D. 1993. Evaluation of a static headspace gas  
   chromatographic method for the determination of lipid peroxides. Food  
   Chemistry 46: 137-141. 

background image

 

89

 
Vercellotti JR, Crippen KL, Lovegren NV, Sanders TH.  1992.  Defining roasted  
   peanut flavor quality. Part 1. Correlation of GC volatiles with roast color as an  
   estimate of quality. In: Charalambous G, editor.  Developments in Food  
   Science v. 29: Food Science and Human Nutrition, Amsterdam, The  
   Netherlands: Elsevier Science Publishers. p 183-206. 
 
Vercellotti JR, Mills OE, Bett KL, Sullen DL.  1992b.  Gas chromatographic  
   analyses of lipid oxidation volatiles in foods.  In: St. Angelo AJ, editor. Lipid  
   Oxidation in Food. Washington, DC: American Chemcial Society. p 232-265. 
 
Vercellotti JR, Munchausen LL, Sanders TH, Garegg PJ, Seffers P.  1994.   
   Confirmation of sugars and reductones in complex peanut flavor precursor  
   extracts by ion chromatography and methylation analysis.  Food Chemistry 50:  
   221-230. 
 
Waltking AE, Goetz AG.  1983.  Instrumental determination of flavor stability of  
   fatty foods and its correlation with sensory flavor responses.  CRC Critical  
   Reviews in Food Science and Nutrition 19(2): 99-132. 
 
Warner KJH, Dimick PS, Ziegler GR, Mumma RO, Hollender R. 1996. "Flavor- 
   fade" and off-flavors in ground roasted peanuts as related to selected pyrazines  
   and aldehydes. Journal of Food Science 61(2): 469-472. 
 
Whitaker TB.  1997.  Efficiency of the blanching and electronic color sorting  
   process for reducing aflatoxin in raw shelled peanuts.  Peanut Science 24(1):   
   62-66. 
 
Whitaker TB, Dickens JW, Bowen HD.  1974.  Effect of curing on the internal  
   oxygen concentration of peanuts.  Transactions of the ASAE 17(3): 567-569. 
 
Yoshida H, Hirakawa Y, Tomiyama Y, Nagamizu T, Mizushina Y.  2005.  Fatty  
   acid distributions of triacylglycerols and phospholipids in peanut seeds (Arachis  
   hypogaea L.) following microwave treatment.  Journal of Food Composition and  
   Analysis 18: 3-14. 
 
Young CT.  1973.  Influence of drying temperature at harvest on major volatiles  
   released during roasting of peanuts.  Journal of Food Science 38: 123-125. 
 
Young CT, Hovis AR.  1990. A method for the rapid analysis of headspace  
   volatiles of raw and roasted peanuts. Journal of Food Science 55(1): 279-280. 
 
Young JH, Person NK, Donald JO, Mayfield WD.  1982.  Harvesting, curing, and  
   energy utilization.  In: Pattee HE, Young CT, editors.  Peanut Science and  
   Technology. Yoakum, Texas: American Peanut Research and Education  
   Society.  p 458-485. 

background image

 

90

CHAPTER 3: 

 

EFFECT OF PROCESSING PARAMETERS ON THE TEMPERATURE AND 

MOISTURE CONTENT OF MICROWAVE-BLANCHED PEANUTS 

 
 

A.V. Schirack

1

, T.H. Sanders

2

, K.P. Sandeep

1* 

 
 

1

Department of Food Science 

North Carolina State University, Raleigh, North Carolina 27695-7624 

 
 

2

USDA-ARS, Market Quality and Handling Research Unit 

North Carolina State University, Raleigh, North Carolina 27695-7624 

 
 
 

Submitted for publication in Journal of Food Process Engineering. 

M.E. Castell-Perez, and R. Moreira, eds.  Blackwell Publishing, Malden, MA. 

 
 
 

background image

 

91

ABSTRACT 

 

      

Peanut blanching consists of heat application followed by abrasive removal of 

the seed coat.

  The use of a continuous microwave system for the blanching of 

peanuts has been proposed as a means of reducing processing time and energy 

costs compared to the traditional hot air, multi-zone oven. The purpose of this 

research was to characterize effective processing parameters for microwave 

blanching.  The factors examined were the time of exposure in the microwave, use 

of increased airflow in the microwave applicator during processing, and the initial 

moisture content of the peanuts.  Processing treatments were differentiated by 

energy absorbed during processing, average and maximum internal temperatures, 

loss in moisture content, and blanchability. High blanchability resulted from higher 

process temperatures and greater loss in moisture content.  Treatments exceeding 

110 °C resulting in a final moisture content of 5.5 % or below yielded blanchability 

percentages greater than the 85 % industry standard.  The time required to generate 

sufficient heat to dry peanuts for acceptable blanchability is greatly reduced by the 

use of microwave technology.

  

 

 

INTRODUCTION 

 

      

Peanut blanching consists of heat application followed by abrasive removal of 

the seed coat.  Removal of the seed coat prepares peanuts for further processing 

into specific products, and the heating step reduces enzyme activity and moisture 

background image

 

92

content, which are factors impacting subsequent quality (Adelsberg and Sanders, 

1997). Blanching allows for electronic color-sorter removal of damaged or discolored 

seed, which are associated with aflatoxin contamination (Sanders et al., 1999).   

     

Several methods are used for blanching: dry-blanching, spin-blanching, 

water-blanching, alkali-blanching, and hydrogen peroxide blanching. In general, the 

most common method in industrial processing is dry-blanching.  In this process, 

peanuts are placed on conveyor belts and moved through large ovens in which the 

direction of airflow is alternated in successive zones (Adelsberg and Sanders, 1997).  

The peanuts are heated in sequential zones from 30 °C to 90 °C, with a total normal 

processing time of approximately 45 minutes.  During this time, moisture is removed 

from the peanuts, the seed coat is loosened, and after cooling, the seed coats are 

mechanically removed (Sanders et al., 1999). Paulsen and Brusewitz (1976) 

suggested that the mechanism of blanching is due to differences in thermal 

expansion and subsequent contraction of the seed and seed coat, resulting in a 

loosening of the seed coat.   

    

Adelsberg and Sanders (1997) studied the effects of varying parameters on 

peanut temperature distributions and blanchability using a lab-scale simulation of 

conventional blanching methods. The magnitude of temperature variation in the 

peanut bed during blanching was related to the final set point temperature of the 

oven and to the dwell time at each temperature setting. In general, with increased 

temperatures and increased moisture loss, blanching percentage increased 

(Paulsen and Brusewitz, 1976; Katz, 2002).  Adelsberg and Sanders (1997) 

provided specific detail of that information when they reported that reduction of 

background image

 

93

peanut moisture content from 5.5 to < 4 % using temperatures of 87.7 °C for 45 and 

60 minutes and 98 °C for 30, 45, and 60 minutes resulted in maximum blanchability.  

Moisture content affects blanchability as well as stability and flavor quality of peanuts 

(Adelsberg and Sanders, 1997; Katz, 2002).  

      

Microwave processing has been explored as an alternative to traditional 

blanching methods due to speed of operation, energy savings, and efficiency of 

process control.  Shorter heating times during processing lead to greater nutrient 

retention, better quality characteristics such as texture and flavor, as well as 

increased production (Giese, 1992).    The use of vacuum drying and microwaves for 

peanut processing has been studied in comparison to traditional methods (Delwiche 

et al.

, 1986).  In a study using a series of individual trays of peanuts passing through 

a linear applicator, Rausch et al. (2005) examined the potential use of microwaves 

for peanut blanching.  In the current study, refinement of the microwave applicator 

has allowed a solid bed of peanuts to be exposed to microwave energy in a 

continuous process, using a processing technique similar to Boldor et al. (2005).  

Processing a continuous bed of peanuts eliminated the heat reflection and focusing 

effect observed by Rausch et al. (2005) and prevented wide variation in peanut bed 

surface temperatures.      

The use of microwave technology for blanching peanuts can result in large 

decreases in processing time and subsequent cost savings.  The purpose of this 

research was to characterize effective processing parameters for microwave 

blanching, using a range of factors including exposure time, use of increased air flow 

in the applicator, and initial moisture content of the peanuts.  Relationships between 

background image

 

94

moisture content, energy absorbed by the peanuts, internal and surface temperature 

profiles, and blanchability were evaluated in response to variations in processing 

parameters.    

 

MATERIALS AND METHODS 

 

      

Medium-grade size, runner-type peanuts (Arachis hypogaea L., variety 

Georgia Green) at an average moisture content of 7 % (wet basis) were obtained 

from a single harvested lot from USDA, ARS, National Peanut Research Laboratory 

(Dawson, Georgia).  The peanuts were harvested, cured, shelled, sized, and stored 

according to normal practices prior to delivery to Raleigh, NC.  A second lot of 

peanuts at 11% moisture content were received from USDA, ARS, National Peanut 

Research Laboratory (Dawson, Georgia).  The second lot was divided into 150 

pound samples which were dried to 5 %, 7 %, and 9 % moisture content with forced 

ambient air, and one lot was maintained at 11 % moisture content.  All peanuts were 

bagged, placed in opaque tubs and stored in a cooler at 6 °C and 60 % relative 

humidity before use in experiments one week later.  Before use, peanuts were 

tempered overnight to room temperature. 

      

Peanuts were heated using a 5 kW, 915 MHz microwave unit (Industrial 

Microwave Systems, Morrisville, NC) with a 2.74 m belt conveyor for sample 

delivery.  The conveyor tunnel was equipped with an electric fan and heater, which 

was set to deliver 25 °C air into the system.  The microwave generator was 

controlled by a data acquisition and control unit (HP34970A, Agilent, Palo Alto, CA).  

background image

 

95

The computer monitored power output, reflected power, and power at the exit of the 

microwave tunnel through power diodes (JWF 50D-030+, JFW Industries, Inc., 

Indianapolis, IN).  Immediately after blanching, peanuts were cooled to room 

temperature using forced ambient air.  Samples were taken for moisture content and 

blanchability analysis.  The remainder of each sample was sealed in plastic bags 

and stored in opaque plastic tubs. 

      

A random complete block design was used to evaluate the effect of 

processing factors during microwave blanching.  The experiments were split into two 

sets (Table 1).  Set 1 consisted of 7% moisture content peanuts heated using 

varying microwave exposure times and both with (F) and without (NF) the use of 

circulated 25 °C air in the conveyor tunnel.  These peanuts were exposed to 

microwave energy for 4, 5, 8, or 11 minutes.  The control sample for this set was 

peanuts undergoing the same storage procedures but which were not treated with 

microwave energy.  Peanuts in Set 2 had initial moisture contents of 5, 7, 9 and  

11 % and were processed for the same exposure time (11 minutes, 5 kW) without 

the use of a fan.  The treatments in Set 2 were replicated three times, while 

treatments in Set 1 were replicated four times.        

The surface temperatures of the peanuts during processing were measured 

using infrared probes installed along the length of the conveyor tunnel (model OS36-

T, OMEGA Engineering, Inc., Stamford, CN).  Internal peanut temperatures were 

measured using four fiber optic probes (FOT- L/10M, Fiso Technologies, Inc., 

Quebec, Canada) inserted into the center of individual peanuts which traveled the 

length of the conveyor. The probes were connected to a multi-channel fiber optic 

background image

 

96

signal conditioner (Model UMI 4, Fiso Technologies, Inc., Quebec, Canada) which 

was controlled using FISO Commander software (Fiso Technologies, Inc., Quebec, 

Canada) on a laptop computer (Dell Inspiron 8500, Dell Computer Corporation, 

Round Rock, TX).  Data collection was started simultaneously for the infrared probes 

and fiber optic probe systems to coordinate internal and external temperature 

measurements during processing. 

      

The energy absorbed by the peanuts during treatment was calculated using 

the forward power from the generator and subtracting energy lost in reflection and at 

the end of the conveyor tunnel.  The exposure time of the treatment was also used 

to calculate an average total absorption of energy during each treatment.   

      

After the seed coats were removed, moisture content was measured using a 

forced convection oven (Despatch LXD Series, Despatch Industries, Minneapolis, 

MN); 25 gram samples were dried at 130 °C for 11 hours, and weight change was 

used to calculate moisture content.  Analyses were conducted in triplicate.   

 

For seed coat removal, 350 grams of peanuts were exposed to counter-

rotating grit rollers for two minutes on a laboratory scale blancher (Model EX Ashton, 

Ashton Food Machinery Company, Inc., Newark, NJ).  Blanchability was determined 

by visual inspection of a subsample of 100 peanuts.  Peanuts with any portion of 

skin attached were categorized as unblanched.  Analyses were conducted in 

triplicate for each treatment.  All statistical analysis including analysis of variance 

was conducted using SAS software (Version 9.1, SAS Institute Inc., Cary, NC). 

 

 

background image

 

97

RESULTS AND DISCUSSION 

 

Energy Absorption

.  Microwave blanching involves the generation of heat by 

the selective absorption of electromagnetic energy by water molecules and ionic 

materials, as reflected in the dielectric properties of the material.  In this study, all 

treatments were statistically different in the amount of energy absorbed during 

microwave blanching (p < 0.0001), although a significant effect occurred within 

replicates in Set 1 only.  Peanuts in the 11 minute exposure treatment absorbed the 

most energy overall (Fig. 1).  All other exposure times were significantly different (p 

< 0.05) from each other, and the use of a fan made no difference.  The amount of 

power absorbed depends on the intensity of the electric field, as well as the dielectric 

properties of the material.  This is often expressed by the equation: 

P=2

Πfε

0

E

2

ε”

 

where f is frequency (Hz), E is electric field intensity (v/m), 

ε” is the dielectric loss 

and 

ε

0

 is the dielectric constant of free space (8.854 farad/m).  Although the 

dielectric properties of shelled peanuts at these experimental conditions are not 

found in the literature, Trabelsi and Nelson (2004) found that at frequencies of 12 to 

18 GHz, shelled peanuts at 5.1% moisture content had a dielectric constant (

ε’) of 

2.1 and dielectric loss (

ε”) of 0.11.  Boldor et al.(2004) found a range of dielectric 

constants of 4.5-10 and dielectric loss values from 1.25-2.75 in peanuts at 18-33% 

moisture content (dry basis), respectively.  Although the dielectric properties will 

decrease with frequency and increase with higher moisture content, these studies 

give a general range of values for the conditions in this study.  These values for 

background image

 

98

dielectric constant and dielectric loss in peanuts are relatively low compared to other 

foods on a dielectric properties map (Ryynanen, 1995), although this would be 

expected because of the high content of oil in the peanuts.   

In Set 2, 11 % moisture content peanuts absorbed more energy than the 5 % 

moisture content peanuts in each replicate, but the remaining treatments were not 

different (data not shown).  In peanuts, water dominates the effect on dielectric 

properties (Trabelsi and Nelson, 2004).  In fact, in many materials, the change in 

dielectric constant and dielectric loss with moisture content is so pronounced, it has 

been used to develop methods of measuring moisture content using microwave 

technology (Engelder and Buffler 1991).  These differences in energy absorption 

with moisture content agree with the literature (Trabelsi and Nelson, 2004), as a 

significant decrease in dielectric constant and dielectric loss was seen in shelled 

peanuts as moisture content decreased from 18 to 7%.   

Peanut Temperature.

  As microwave energy is absorbed by the peanuts, the 

rate of temperature increase will depend on the power (P), mass (M), and specific 

heat (Cp), as in the following equation (Metaxas and Meredith, 1983): 

P = M Cp (T-T

0

) / t 

During microwave heating, both internal (Table 2) and surface temperatures of the 

peanuts were monitored.  A comparison of internal and surface temperature profiles 

for select treatments can be seen in Fig. 2 and 3.  The average internal temperature 

profiles of the treatments (Table 2) from both sets were significantly different from 

each other (p < 0.0001).  In Set 1, peanuts from treatment 11NF had the highest 

internal temperatures, followed by 8NF.   

background image

 

99

All treatments using the fan (F) had consistently lower temperatures than the NF 

treatment of the same time, due to surface cooling of the peanuts (Table 2).  Fans 

are commonly used in the curing (drying) of peanuts (Troeger 1982; Young, 1982).  

Since one of the objectives of blanching is to reduce moisture, the use of a fan was 

included in these experiments.  During microwave heating, some heat will be lost 

from the material due to radiation and also by convection, which is affected by the 

difference in the temperatures between the material (T) and its surroundings (T

inf

), 

the surface area (A), and h, the heat transfer coefficient (Metaxas and Meredith, 

1983): 

Q

conv 

= h A (T – T

inf

Convection is also affected by the velocity of the surrounding air; as a result, a fan 

will increase surface cooling.  Evaporation at the surface of the material will also 

increase, as a fan will remove moisture from the system quickly and speed moisture 

diffusion.  This will result in lower temperatures due to increased evaporative 

cooling, and temperature gradients can be formed.  Furthermore, Datta and Liu 

(1992) found that during microwave processing of solids, heat is generated at 

increasing rates at the surface, and the difference between surface and center 

temperature continue to increase with time of processing.  As a result, cooling the 

surface of the peanuts by using a fan during blanching has a large effect on internal 

temperatures, and did not enhance blanching as might be expected. 

The effect of increased airflow via a fan during blanching has been studied 

previously.  In their research on conventional oven blanching, Adelsberg and 

Sanders (1997) found that increased airflow caused the portion of the peanut bed 

background image

 

100

exposed to the fan to be approximately 10 

°C lower than the rest of the peanuts.  

This temperature difference was greater in treatments conducted at higher 

temperatures, reaching a 17 

°C difference in treatments conducted at 98.9 °C 

(Adelsberg and Sanders 1997).  The difference in the temperatures between the 

longer treatments in this study conducted with and without a fan were somewhat 

larger, but they were also conducted at much higher temperatures used in 

microwave blanching. 

In Set 2, the lowest moisture peanuts reached the highest temperatures (Table 2, 

Fig. 3).  Although all treatments in Set 2 exceeded 100 °C, peanuts in the 5 % MC 

treatment had the highest internal temperature (139 °C), followed by 7 %, 9 %, and 

11 % MC treatments.  The typical temperature profile which is seen in materials 

dried using microwave technology has three separate regions:  an initial heating 

region in which the temperature of the material reaches the wet bulb temperature; a 

constant temperature drying region, in which most of the liquid is vaporized and 

moves through the sample; and a third region in which the temperature increases 

without any further removal of liquid (Metaxa and Meredith 1983).  Peanuts with 

lower initial moisture contents (5% and 7%) did not absorb as much energy during 

processing, because of the relatively lower amounts of polar components in the 

sample.  However, these low moisture peanuts may be progressing through this 

drying curve more quickly as they soon reach an equilibrium moisture content during 

the constant drying region.  As a result, they spend more of the processing time in 

the third region of the curve, increasing in temperature.   

background image

 

101

Treatments 11NF, 8NF, and 5NF also had the highest surface temperatures, 

which exceeded 100 °C, and lower moisture peanuts (5 % and 7 % MC) had higher 

surface temperatures in Set 2.  Boldor et al. (2005) found that more convective 

cooling will occur at the surface of peanuts during drying when more water is being 

evaporated, thus treatments with the most moisture loss will have a greater cooling 

effect at the surface. This agrees with the trend seen in the peanuts in Set 2, in 

which all peanuts were treated for the same period of time, but the higher moisture 

content peanuts had lower surface temperatures.  Surface temperatures have been 

previously correlated to internal temperatures in microwave processing of peanuts 

(Boldor et al., 2005). 

Change in moisture content.  

The final moisture content of the peanuts was 

significantly affected by treatment (p < 0.0001), although replicate effects were 

significant in Set 1 only (p = 0.02).  In Set 1, as processing times increased, internal 

peanut temperatures increased, and more moisture was lost (Fig. 4).  Treatments 

8NF and 11NF had significantly lower final moisture content (approximately 4.0 - 5.5 

%) than other treatments (p < 0.05). Unlike conventional heating, microwave energy 

is absorbed throughout the volume of the wet solid, and the temperature of the solid 

can reach the boiling point of the liquid component.  As the moisture evaporates, a 

pressure gradient is formed from the vapors and will drive the moisture from the 

interior of the solid (Metaxas and Meredith, 1983).   

Despite the variations in initial moisture contents and energy absorption, all 

peanuts in Set 2 reached a similar moisture content of approximately 4.1 % (Fig. 4).  

This moisture content appears to be the final equilibrium point at which the peanuts 

background image

 

102

finish the constant drying region of the temperature profile.  Since the lower moisture 

peanuts reached this point more quickly, they entered the third phase in the 

temperature profile, and reached higher temperatures during processing than the 

9% and 11% peanuts (Table 2, Fig. 3).  It has been noted that it is difficult to remove 

tightly bound water using microwaves, because of the low absorption of energy by 

the residual liquid (Metaxas and Meredith, 1983).  As a result, the 4% moisture level 

may be at a transition between free and bound water in the peanuts, which would 

impede further moisture loss during processing at the conditions studied.   

Blanchability.  

Treatments had a significant effect on blanchability  

(p < 0.0001).  Individually, the treatments of 8NF, 11F, and 11NF were not 

significantly different from each other (Fig. 5) but were more blanchable than the 

other treatments (p < 0.05).  Only 8NF and 11NF consistently exceeded the industry 

standard of 85 % blanchability in Set 1, and all variable moisture content peanut 

samples in Set 2 exceeded the standard (Fig. 6).  In addition, the peanuts with initial 

moisture content of 5 % were significantly higher in blanchability (average = 93 %) 

than the other 3 lots for each replicate.  To ensure that the initial ambient air drying 

step for peanuts in Set 2 did not affect blanchability, controls for each moisture 

content were also examined, and blanchability was found to average 1 %.   

High blanchability resulted from higher process temperatures and lower final 

moisture content, with those treatments exceeding 110 °C and reaching a final 

moisture content of 5.5 % or below yielding blanchability greater than 85 % (Fig. 7).  

Similarly, Rausch et al. (2005), when blanching individual trays of peanuts, found 

that microwave treatments resulting in 0.5 – 1.0 % moisture loss provided better 

background image

 

103

blanchabilities as well as a longer raw peanut shelf life.  It has been suggested that 

the mechanism of blanching is due to differences in thermal expansion and 

subsequent contraction of the seed and seed coat, resulting in a loosening of the 

seed coat.  In an experiment by Paulsen and Brusewitz (1976), the difference 

between the coefficients of cubical thermal expansion of seeds (50 – 60.5 x 10

-5

/°C) 

and that for peanut skins (26.5 – 55 x 10

-5

/°C) grew larger at lower moisture 

contents

.

  As a result, this explains why peanuts which reached the lowest moisture 

content were the most effective treatments for blanchability.  In fact, in another 

study, Paulsen and Brusewitz (1976b) determined that the effectiveness of 

blanching was dependent mainly on the degree of moisture removal, although 

Adelsberg and Sanders (1997) did not see an increase in blanchability at moisture 

contents below 3.8%.  Instead, Adelsberg and Sanders (1997) determined that 

differences in blanchability may be affected by thermal expansion or variations in 

moisture loss, or possibly a combination of factors.  This study was also not able to 

separate these factors of temperature and final moisture content, although initial 

moisture content does not appear to have much effect on blanchability. 

An interplay of temperature and moisture loss must be responsible for the high 

rates of blanchability seen in the 8NF treatment.  Although this treatment absorbed 

significantly less energy and reached lower temperatures than the 11NF treatment 

and the peanuts in Set 2, it reached a level of blanchability above the 85% standard.  

In order to investigate this, the maximum internal temperatures during processing 

were also evaluated, and were found significantly different (p < 0.0001) for each 

treatment (Table 3).  In this comparison, the maximum temperature of the 8NF 

background image

 

104

treatment was over 100 °C, similar to the 11NF treatment and the peanuts in Set 2 

which ranged from 119 – 139 °C.  In temperatures under 100 °C, Datta and Liu 

(1992) found that temperature profiles became increasingly non-uniform over longer 

heating times during microwave processing.  However, Ni et al. (1999) found that the 

non-uniformity in temperatures is lessened when the food temperature reaches the 

boiling point of water.  The same study (Ni et al, 1999) also found that the key 

variable which controls moisture loss during the microwave heating of solid foods 

was achieving an average temperature uniformly.  By evaluating the maximum 

temperatures reached during processing, it was seen that the internal temperatures 

during the 8NF treatment exceeded 100 °C, and perhaps reached a more uniform 

temperature profile, leading to greater moisture loss and acceptable blanchability.   

 

CONCLUSIONS 

 

      

The use of microwave technology for peanut blanching provides a significant 

decrease in processing time and can result in cost savings.  In this study, the 

relationships between temperature, moisture content, and blanchability using a 

continuous belt processing method have been demonstrated.  Effective blanchability 

was correlated to high process temperatures and corresponding low moisture 

content.  All peanuts with internal temperatures exceeding 110 °C and reaching a 

final moisture content of 5.5 % or below yielded acceptable blanchability. Even 

peanuts varying in initial moisture content resulted in a low final moisture content 

and acceptable blanchability.  This study demonstrated that peanuts heated by 

background image

 

105

microwave attain much higher temperatures than conventional multizone oven 

heated peanuts.  The time required to generate sufficient heat to dry peanuts for 

acceptable blanchability is greatly reduced by the use of microwave technology.  

 

ACKNOWLEDGMENTS 

 

Funded in part by the North Carolina Agricultural Research Service. Paper 

no. --- of the Journal Series of the Dept. Food Science, North Carolina State 

University, Raleigh, NC 27695.  The assistance of Keith Hendrix and Jim Schaefer is 

gratefully acknowledged.  The authors would also like to thank Marshall Lamb and 

Bobby Tennille of USDA, ARS, National Peanut Laboratory (Dawson, Georgia) for 

supplying the peanuts used in this study.  The use of trade names in this publication 

does not imply endorsement by the North Carolina State University or USDA, ARS 

of the products named nor criticism of similar ones not mentioned. 

 

 

 

 

 

 

background image

 

106

ABBREVIATIONS 

 

ARS   -  

Agricultural Research Service 

-  

Fan used during processing 

MC   -  

Moisture content (wet basis) 

NF   -  

No fan used during processing 

OSI  -  

Oxidative stability index 

PV   -  

Peroxide value 

USDA -  

United States Department of Agriculture 

 

 

 
 

background image

 

107

REFERENCES 

 
ADELSBERG, G.D. and SANDERS, T.H.  1997.  Effect of peanut blanching  
   protocols on bed and seed temperatures, seed moisture, and blanchability.   
   Peanut Science 24: 42-46. 
 
BOLDOR, D., SANDERS, T.H., SIMUNOVIC, J.  2004.  Dielectric properties of in- 
   shell and shelled peanuts at microwave frequencies.  Transactions of the ASAE  
   47(4), 1159-1169. 
 
BOLDOR, D., SANDERS, T.H., SWARTZEL, K.R. and FARKAS, B.E.  2005.  A  
   model for temperature and moisture distribution during continuous microwave  
   drying.  Journal of Food Process Engineering 28(1), 68-87. 
 
DATTA, A.K., and LIU, J.  1992.  Thermal time distributions for microwave and  
   conventional heating of food.  Food Bioproducts and Processing 70(2), 83-90.  
 
DELWICHE, S.R., SHUPE, W.L., PEARSON, J.L., SANDERS, T.H. and  
   WILSON, D.M.  1986.  Microwave vacuum drying effect on peanut quality.   
   Peanut Science 13, 21-27. 
 
ENGELDER, D.S., and BUFFLER, C.R.  1991.  Measuring dielectric properties of  
   food products at microwave frequencies.  Microwave World 12(2), 2-11. 
 
GIESE, J. 1992.  Advances in microwave food processing.  Food Technology  
   46(9), 118-123. 
 
KATZ, T.A.  2002. The effect of microwave energy on roast quality of microwave  
   blanched peanuts. Master's Thesis, North Carolina State University, Raleigh,  
   NC. 
 
METAXAS, A.C., and MEREDITH, R.J.  1983.  Industrial Microwave Heating.   
   London: Peter Peregrinus Ltd.  357pp. 
 
NI, H. and DATTA, A.K.  1999.  Moisture loss as related to heating uniformity in  
   microwave processing of solid foods.  Journal of Food Process Engineering 22,  
   367-382. 
 
PAULSEN, M.R. and BRUSEWITZ, G.H.  1976.  Coefficient of cubical thermal  
   expansion for Spanish peanut kernels and skins.  Transactions of the ASAE  
   19(3), 592-595, 600. 
 
PAULSEN, M.R. and BRUSEWITZ, G.H.  1976b. Moisture contraction of Spanish  
   peanuts.  Peanut Science 3, 52-55.   
 
RAUSCH, T.D., SANDERS, T.H., HENDRIX, K.W., and DROZD, J.M.  2005.   

background image

 

108

   Effect of microwave energy on blanchability and shelf life of peanuts.  Journal  
   of Agricultural and Food Chemistry, submitted. 
 
RYYNANEN, S.  1995.  The electromagnetic properties of food materials: a review  
   of basic principles.  Journal of Food Engineering 26, 409-429. 
 
SANDERS, T.H., ADELSBERG, G.D., HENDRIX, K.W. and MCMICHAEL, R.W.  
   JR.  1999.  Effect of blanching on peanut shelf-life.  Peanut Science 26, 8-13. 
 
TRABELSI, S.  and NELSON, S.O.  2004.  Microwave dielectric properties of shelled  
   and unshelled peanuts.  Transactions of the ASAE 47(4), 1215-1222. 

 

TROEGER, J.M.  1982.  Peanut drying energy consumption - a simulation analysis.   
   Peanut Science 9, 40-44. 
 
YOUNG, J.H., PERSON, N.K., DONALD, J.O., and MAYFIELD, W.D.  1982.   
   Harvesting, curing, and energy utilization.  In Peanut Science and Technology.   
   Edited by Pattee, H.E. and Young, C.T.  Amer. Peanut REs. Educ. Soc., Inc.,  
   Yoakum, TX. 
 

 

 
 

background image

 

109

TABLES AND FIGURES 

 
 

Table 1:  Processing parameters during microwave blanching 

of peanuts  

 

 

Treatment 

Initial moisture content of peanuts 

Set 1  4 min., Fan 

7 % 

 

4 min., No fan 

7 % 

 

5 min., Fan 

7 % 

 

5 min., No fan 

7 % 

 

8 min., Fan 

7 % 

 

8 min., No fan 

7 % 

 

11 min., Fan 

7 % 

 

11 min., No fan 

7 % 

 

 

 

Set 2  11 min., No fan 

5 % 

 

11 min., No fan 

7 % 

 

11 min., No fan 

9 % 

 

11 min., No fan 

11 % 

 
 
 

Table 2:  Means by treatment of internal temperatures of peanuts 

during microwave blanching 

 

 

Treatment 

Mean temperature (°C) 

Set 1 

4 min., Fan 

38.4j

1

 

 

5 min., Fan 

54.7i 

 

8 min., Fan 

57.4h 

 

11 min., Fan 

62.7g 

 

 

 

 

4 min., No fan 

71.0e 

 

5 min., No fan 

63.9f 

 

8 min., No fan 

85.7d 

 

11 min., No fan 

103.3b 

 

 

 

Set 2 

5 % Moisture content 

102.9b 

 

7 % Moisture content  

104.9a 

 

9 % Moisture content 

98.6c 

 

11 % Moisture content 

98.1c 

 

1

Values followed by the same letter are not significantly different (LSD = 0.91)

 

 

 

 

background image

 

110

 
 

Table 3:  Maximum internal temperatures of peanuts by treatment 

during microwave blanching 

 

 Treatment 

Maximum 

temperature 

(°C)

Set 1 

4 min., Fan 

69.3h

1

 

 

5 min., Fan 

77.0gh 

 

8 min., Fan 

84.4fg 

 

11 min., Fan 

90.6ef 

 

 

 

 

4 min., No fan 

92.0ef 

 

5 min., No fan 

94.6e 

 

8 min., No fan 

112.8d 

 

11 min., No fan 

128.0bc 

 

 

 

Set 2 

5 % Moisture content 

138.8a 

 

7 % Moisture content 

132.5ab 

 

9 % Moisture content 

122.2cd 

 

11 % Moisture content 

119.1cd 

 

1

Values followed by the same letter are not significantly different (LSD = 9.8)

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 

111

Fig. 1:  Mean energy absorbed by peanuts per treatment for all replicates during microwave heating 

for 4, 5, 8, or 11 minutes (Set 1)

0

500

1000

1500

2000

2500

3000

Samples

E

n

er

gy abs

orb

e

(kJ

)

4 min., Fan

4 min., No fan

5 min., Fan

5 min., No fan

8 min., Fan

8 min., No fan

11 min., Fan

11 min., No fan

background image

 

112

Figure 2:  Internal and surface temperatures of peanuts during microwave blanching for 11 minutes 

with and without using fan (Set 1)

0

20

40

60

80

100

120

140

160

0

2

4

6

8

10

12

Time of microwave exposure (min)

T

em

p

er

atu

re of pe

an

ut

C)

11 min with fan (internal)

11 min with fan (surface)

11 min without fan (internal)

11 min without fan (surface)

background image

 

113

Figure 3:  Internal and surface temperatures of peanuts of 5 and 11% initial moisture content (MC) 

during microwave blanching for 11 minutes without using a fan (Set 2)

0

20

40

60

80

100

120

140

160

0

2

4

6

8

10

12

Time of microwave exposure (min)

T

e

m

p

era

tu

re o

f p

ean

uts 

(°C)

5% MC peanuts (internal)

11% MC peanuts (internal)

5% MC peanuts (surface)

11% MC peanuts (surface)

background image

 

114

Fig 4.  Relationship between maximum internal temperature and final moisture content of peanuts 

after microwave blanching (correlation r

2

= 0.87).  F= fan used during blanching, NF = no fan used, 

MC = moisture content

60

70

80

90

100

110

120

130

140

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Moisture content (% wb)

Int

e

rn

al

 te

m

per

at

ur

e (

°C)

4F

5F

8F

11F

5NF

4NF

8NF

11NF

7% MC (Set 2)

5% MC (Set 2)

9% MC (Set 2)

11% MC (Set 2)

 

background image

 

115

Figure 5:  Mean of blanchability results per treatment for all replicates during microwave blanching of 

peanuts for  4, 5, 8, or 11 minutes (Set 1)

0

10

20

30

40

50

60

70

80

90

100

Samples

Pe

rce

nt blan

ch

ab

ility

4 min., Fan

4 min., No fan

5 min., Fan

5 min., No fan

8 min., Fan

8 min., No fan

11 min., Fan

11 min., No fan

background image

 

116

Figure 6:  Mean of blanchability results per treatment for all replicates during microwave blanching of 

peanuts for 11 minutes without using a fan (Set 2)

75

80

85

90

95

100

Samples

Pe

rcen

t b

lancha

bili

ty

5% Microwave

7% Microwave

9% Microwave

11% Microwave

background image

 

117

Figure 7:  Relationship between maximum internal temperature and blanchability of peanuts after 

microwave blanching (correlation r

2

 = 0.81).  The average final moisture content (MC) of each 

treatment is noted.

60

70

80

90

100

110

120

130

140

40

50

60

70

80

90

100

Blanchability (%)

Maxi

mum inte

rna

l tempe

rature

 (°C)

7.30% MC

7.54% MC

7.78% MC

7.19% MC

6.92% MC

7.36% MC

5.51% MC

4.28% MC

4.20% MC

4.49% MC

4.14% MC

4.06% MC

  

 

background image

 

118

 

CHAPTER 4: 

IMPACT OF MICROWAVE BLANCHING ON THE FLAVOR OF 

ROASTED PEANUTS 

 
 
 
 

Andriana V. Schirack

1

, MaryAnne Drake

1*

, Timothy H. Sanders

2

, K.P. Sandeep

 

 

1

Department of Food Science 

North Carolina State University, Raleigh, North Carolina 27695-7624 

 

2

USDA-ARS, Market Quality and Handling Research Unit 

North Carolina State University, Raleigh, North Carolina 27695-7624 

 

*Corresponding author: 

mdrake@unity.ncsu.edu 

Department of Food Science, Box 7624,  

North Carolina State University, Raleigh, North Carolina 27695-7624 

 

 

Running title:  Impact of microwave blanching on peanut flavor 

 

Accepted for publication in Journal of Sensory Studies. 

M.Gacula, Jr., ed.  Blackwell Publishing, Malden, MA. 

 

background image

 

119

ABSTRACT

 

 

    

Microwave blanching of peanuts has been proposed as an attractive 

alternative to traditional techniques of blanching, due to energy and time savings.  

However, the occurrence of a processing-related off-flavor has been reported.  This 

study examined the effect of processing factors during microwave blanching on the 

moisture content and sensory characteristics of the peanuts.  Peanuts reached a 

range of internal temperatures during microwave blanching treatments between 4 

and 11 minutes.  A total offnote attribute was introduced to the peanut lexicon and 

was used successfully to differentiate the effects of microwave treatments.  The 

microwave-associated off-flavor was related (but not identical) to cardboardy/stale 

flavor, and was related inversely to the positive flavor attributes roasted peanutty, 

sweet aromatic, and sweet taste.  Peanuts reaching the highest internal 

temperatures and greatest moisture losses during blanching exhibited the most total 

offnote flavor; however, temperatures as high as 113 °C did not produce significantly 

increased total offnote intensity. 

 

Key Words:  microwave, blanching, peanuts, sensory, off-flavor, moisture

background image

 

120

INTRODUCTION 

 

Peanuts are an important crop in the United States, with an annual production 

of 4.26 billion pounds in 2004 (NASS, 2005).  The most common use of peanuts is 

crushing for oil and meal.  The oil can be used for cooking and as a salad oil, while 

the defatted meal can be processed into protein concentrates and isolates.  In the 

United States, a large percentage of peanuts is used for manufacturing peanut 

butter and confections. The unique flavor of roasted peanuts drives product 

marketing in the peanut industry.  This flavor is the result of genetics, handling, 

storage, and processing factors (Sanders et al., 1995).  As a result, there is an 

interest in the effects of production techniques on peanut flavor (Baker et al., 2003; 

Singleton and Pattee, 1992; Singleton and Pattee, 1991; Osborn et al., 1996; 

Didzbalis et al., 2004). 

A peanut seed consists of two cotyledons and the germ, and is enveloped in 

a seed coat, or testa. The blanching of peanuts, or removal of the testa, is done for 

several reasons. Blanching removes the seed coat, which may interfere with further 

processing into specific products, and reduces enzyme activity and moisture 

content, which are factors impacting subsequent quality (Adelsberg and Sanders, 

1997). Blanching aids in the electronic color-sorting removal of damaged or 

discolored seeds, which are associated with aflatoxin contamination (Sanders et al.

1999).  Blanching also is used to remove foreign material and dust (St. Angelo et al.

1977). 

background image

 

121

Several methods are used for blanching: dry-blanching, spin-blanching, 

water-blanching, alkali-blanching, and hydrogen peroxide-blanching. Microwave 

blanching has been explored as an attractive alternative to traditional processing 

methods due to its speed of operation, energy savings, and efficient process control 

(Giese, 1992).  Since heating takes place only in the food material and not in the 

surrounding medium, microwave processing can reduce energy costs.  Shorter 

heating times also lead to greater nutrient retention, better quality characteristics 

such as texture and flavor, as well as increased production (Giese, 1992).  

The best blanching efficiencies result from peanuts which are subjected to the 

highest temperatures during blanching and lose the most moisture.  However, high 

temperature processing has been tied to the formation of off-flavors. Curing peanuts 

(in order to remove moisture before storage) at temperatures above 35 °C has been 

related to the formation of anaerobic by-products which produce an off-flavor.  With 

increasing curing temperature, positive attributes such as roasted peanutty decrease 

while off-flavors such as fruity/fermented increase in intensity (Sanders et al., 1990).  

This decrease in positive flavor attribute intensity with increase in temperature also 

has been observed in blanching with traditional techniques (Sanders et al., 1999).  

In addition, blanching has been studied in relation to rates of lipid oxidation in 

raw peanuts.  Lipid oxidation is one of the leading causes of off-flavors in raw and 

roasted peanuts, due to a high content of peanut lipids that contain unsaturated fatty 

acids (Warner et al., 1996; Lee et al., 2002).  Oxidation reactions also can result in 

the decrease of desirable peanut flavor by loss of low molecular weight flavor 

compounds or the generation of volatile carbonyls which can create a cardboard or 

background image

 

122

oxidative rancid flavor (Sanders et al., 1993; Warner et al., 1996).  The effect of 

blanching on lipid oxidation is not yet known, as some studies have shown an 

increase in lipid oxidation after blanching (Ory et al., 1992), while a study by Sanders 

et al.

 (1999) showed no practical detrimental effects of blanching on oxidative 

stability.  

The quality and flavor of peanuts were evaluated first using a method called 

the Critical Laboratory Evaluation of Roasted Peanuts, or CLER (Holaday, 1971). 

Later, sensory lexicons for peanuts and peanut products were constructed by 

Oupadissakoon and Young (1984) and Syarief et al. (1985).  A standardized lexicon 

subsequently was developed to address deficiencies in earlier models such as lack 

of differentiation in oxidized off-flavors and lack of sweet/caramel descriptors 

(Johnsen et al., 1988).  In this lexicon, a ten point scale is used to rate intensity of 

flavor, using commercially available products as references.  This terminology 

subsequently was modified and improved, including the addition of a "fruity" 

descriptor associated with high temperature curing (Sanders et al., 1989). 

Using descriptive sensory analysis, a processing-related off-flavor has been 

noted in peanuts undergoing microwave blanching.  The off-flavor has been 

described as having “stale” and “sour” notes (Katz, 2002).  The cause of this off-

flavor is not known.  The objective of this study was to characterize the impact of 

different microwave blanching parameters on the sensory attributes of roasted 

peanuts. The effects of the moisture content of the peanuts and internal temperature 

profiles were studied in relation to sensory characteristics determined by a 

descriptive panel. 

background image

 

123

MATERIALS AND METHODS 

 

Peanuts 

Medium sized Runner peanuts (Arachis hypogaea L., variety Georgia Green) 

at an average of 7% moisture were obtained from a single lot from the USDA-ARS-

National Peanut Research Laboratory (Dawson, Georgia).  Although different peanut 

varieties may have different flavor properties, Georgia Green peanuts were chosen 

for the experiments because this variety represents the largest proportion of peanuts 

on the U.S. commercial market.  The peanuts were harvested, cured, shelled, sized, 

and stored according to normal practices prior to delivery to Raleigh, NC.  All 

peanuts were bagged and stored in opaque plastic containers in a cooler at 6 °C and 

60% relative humidity before use.  Before blanching, peanuts were allowed to warm 

to room temperature overnight in opaque containers. 

 

Processing Experiments 

Peanuts were blanched using a 5 kW, 915 MHz microwave unit (Industrial 

Microwave Systems, Morrisville, NC) with a 2.74 m conveyor for sample delivery.  

The conveyor tunnel was equipped with an electric fan and a heater, which was set 

to deliver 25 °C air.  The microwave generator was controlled by a data acquisition 

and control unit (HP34970A, Agilent, Palo Alto, CA).  The computer monitored power 

output, reflected power, and power at the exit of the microwave tunnel through 

power diodes (JWF 50D-030+, JFW Industries, Inc., Indianapolis, IN).  A randomized 

complete block design was used to evaluate the effect of processing factors during 

background image

 

124

microwave blanching (Table 1).  A filled conveyor of peanuts (approximately 6 kg) 

was exposed to the microwave field for 4, 5, 8, or 11 minutes in a continuous 

process.  The variation in microwave exposure times allowed for a range of internal 

temperatures to be reached in the peanuts during heating.  This translated into 

peanuts which ranged from minimally blanched to those exhibiting high blanching 

efficiency, as determined by the percentage of seeds with complete removal of the 

testa (Table 1).  Each of these treatments was processed both with (“F”) and without 

a fan (“NF”).  The use of a fan was explored due to the effect on temperature and 

moisture content in the peanuts during heating.  The control for these treatments 

was a batch of peanuts which went through the same processing procedures but did 

not receive microwave heating.   

The treatments were replicated four times.  Immediately after blanching, 

peanuts were cooled to room temperature using forced ambient air.  They then were 

sealed in plastic bags, and stored in opaque containers in a cooler at 6 °C and 60% 

relative humidity.  The peanuts were processed into paste for sensory analysis 

within 2 days of blanching.   

 

Temperature Measurement During Blanching 

    

Internal temperatures of the peanuts during blanching were measured using 

four fiber optic probes (FOT- L/10M, Fiso Technologies, Inc., Quebec, Canada) 

inserted into the center of individual peanuts as they traveled the length of the 

conveyor. The probes were connected to a multi-channel fiber optic signal 

conditioner (Model UMI 4, Fiso Technologies, Inc., Quebec, Canada) which was 

controlled using FISO Commander software (Fiso Technologies, Inc., Quebec, 

background image

 

125

Canada) on a laptop computer (Dell Inspiron 8500, Dell Computer Corporation, 

Round Rock, TX).   

 

Moisture Content Analysis 

    

After the peanuts were blanched, moisture content was measured using a 

forced convection oven (Despatch LXD Series, Despatch Industries, Minneapolis, 

MN).  Twenty five gram samples were dried at 130 °C for 11 hrs, and weight change 

was used to calculate moisture content (wet basis).  The analysis was conducted in 

triplicate.   

 

Sensory Evaluation 

    

An 800 g sample from each replicate was roasted and processed into paste 

for sensory analysis.  A thermostat-controlled Aeroglide Roaster was used 

(Aeroglide Corporation, Raleigh, NC) to roast samples at 177 °C for the time needed 

to achieve L values in the range of 48-52 (Vercellotti et al., 1992) using a colorimeter 

(Hunter LAB DP-9000, Hunter Associates Laboratory, Reston, VA).  Samples were 

ground into paste for sensory evaluation using a food processor (Cuisinart Little Pro 

Plus, Cuisinart Corporation, East Windsor, NJ).  A grind / cool protocol was used to 

prevent overheating of the paste, as discussed by Sanders et al. (1989).  Samples 

were kept frozen at -20 °C in glass jars until evaluation.   

    

For descriptive sensory analysis, samples were coded with three digit random 

codes, and evaluated against controls for each processing replication.  The sensory 

panel consisted of 10 panelists, each with at least 3 months training in peanut 

sensory evaluation.  Panelists were trained with the Spectrum

TM

 Descriptive Analysis 

background image

 

126

method using a 15 point intensity scale (Meilgaard et al., 1999), and samples were 

described using the peanut lexicon developed by Johnsen et al. (1988) and Sanders 

et al.

 (1989), with the addition of some attributes specifically for this study (Table 2).  

Each sample was evaluated in duplicate by each panelist.   

    

The microwave-related off-flavor first noted by Katz (2002) was described as 

Dark Soured Aromatic (DSA).  However, no standardized references were available 

for this attribute.  Throughout panel training and calibration discussions for the 

present study, the term DSA was discarded and the term ashy, as defined by the 

aroma of cigarette ash, was added.  Discussion of the initial analysis of microwave-

blanched samples revealed some difficulty in agreement on the exact nature of off-

flavors detected.  As a result, the total offnote term, which encompassed all negative 

attributes which were unique from the control, was used and proved effective in 

differentiating the samples.   

 

Data Analysis 

    

The results were analyzed using the general linear model procedure in SAS 

(Version 9.1, SAS Institute Inc., Cary, NC), with Fisher’s least significant difference 

used as a post-hoc test.  Correlation analysis was used to describe relationships 

amongst the variables and samples.   

 

 

 

 

background image

 

127

RESULTS AND DISCUSSION 

 

Sensory Analysis 

    

Microwave exposure time and use of air circulation had a significant effect  

on peanut flavor attributes (Table 3) such as roasted peanutty, sweet aromatic, dark 

roast, raw beany, woody, bitter, ashy, and sweet (p < 0.0001), as well as on 

cardboardy/stale (p < 0.001).  Although these attributes were statistically significant, 

some of the differences between treatments for attributes such as roast peanutty or 

sweet aromatic were not likely to be meaningful in practical terms due to the small 

range in average score.  In the range of processing parameters examined, treatment 

11NF was the most different, because it was significantly higher in total offnote 

(Table 3).  The 11NF treatment was characterized by higher cardboardy/stale, bitter, 

dark roast and ashy attribute intensities, while being characterized less by the raw 

beany attribute. 

    

The attribute, total offnote, was incorporated into the lexicon as an additional 

tool to differentiate the processing treatments.  The total offnote term does not 

describe the specific attributes of the sample, so future work should characterize this 

offnote using a descriptive panel.  However, treatments were differentiated based on 

total offnote (p < 0.0001), indicating that this term was effective in a basic 

categorization of processing effects.   

Several of the sample attributes were correlated to each other (Table 4).  

Desirable attributes such as roast peanutty, sweet aromatic, and sweet taste 

positively correlated with each other, and negatively correlated with bitter, ashy, and 

background image

 

128

total offnote.  Also, dark roast was correlated positively with bitter, woody/hulls/skins, 

ashy, and total offnote, and negatively correlated with raw beany and sweet taste.  

Total offnote, which was the attribute primarily used to differentiate the processing 

treatments, was correlated to dark roast, woody/hulls/skins, cardboardy/stale, bitter, 

and ashy and was related inversely to the positive attributes of roasted peanutty, 

sweet aromatic, and sweet (p < 0.05).  It is notable that although total offnote was 

correlated to attributes commonly linked to over-roasting, all treatments were 

roasted to the same endpoint based on color, implying that this off-flavor was not 

related to actual roasting differences.   

    

  A progression of changes in sensory attributes can be observed with longer 

microwave exposure times during blanching.  As exposure times increased to 11 

minutes and air was not circulated in the conveyor, the treatments were 

characterized by high intensities of total offnote attribute.  The use of increased 

airflow during processing affected off-flavor formation, as 11F was more similar to 

treatments with shorter exposure times in the microwave.    

 

Temperature profiles and change in moisture content   

    

The maximum internal temperature reached in these treatments was 

compared (Table 5), and treatments were significantly different (p < 0.0001).  As the 

amount of energy absorbed and internal temperatures increased, peanuts lost more 

moisture during heating.  The final moisture content of the peanuts was affected 

significantly by treatment (p < 0.0001), and the treatments of 8NF and 11NF had 

background image

 

129

significantly lower final moisture content (Table 6) than the other treatments.  The 

peanuts which lost the most moisture also exhibited the highest total off-flavor.   

    

Moisture content has been shown to have a significant effect in peanut flavor 

development and quality, both by affecting the concentrations of precursors 

available for flavor formation, and by changing the susceptibility to quality loss due to 

the environment.  For example, hydrolysis can occur during roasting in peanuts with 

higher moisture contents, which increases the amounts of free amino acids and 

monosaccharides that serve as precursors for flavor development (Chiou et al.

1991).  This indicates that the changes in moisture content during blanching may 

affect final peanut flavor.  In past studies, lower moisture content after blanching 

appeared more conducive to higher blanching efficiency.  However, this loss in 

moisture also may lead to the creation of off-flavors. 

    

Ongoing volatile analysis may help identify the causes of microwave-

associated off-flavor.  Specific compounds identified by GC-MS have been linked to 

sensory attributes in peanuts (Young and Hovis, 1990; Vercellotti et al., 1992; 

Didzbalis et al., 2004).  By identifying the compounds responsible for the total 

offnote perception, a chemical anchor for clarification of this flavor can be identified.  

As a result, the metabolic cause may be determined and the off-flavor itself possibly 

can be prevented if microwave blanching is adopted as an industry practice. 

 

 

 

 

background image

 

130

CONCLUSIONS 

 

    

Microwave exposure time and amount of air circulation during processing had 

a small, but significant effect on peanut flavor attributes.  Total offnote was related to 

other off-flavors such as cardboardy, ashy, and bitter, and was related inversely to 

positive attributes such as roast peanutty and sweet aromatic.  The treatment of 11 

minutes without air circulation was the most different because it scored the highest 

in total offnote and reached temperatures of 128 °C or higher.  A short duration 

treatment, in which the internal temperature of the peanuts does not exceed a 

maximum of 110 °C, appears to be acceptable for heating for seed coat removal.  It 

is possible to achieve efficient blanchability in peanuts while preventing microwave-

associated off-flavor.  Further research is needed to determine the compounds 

responsible for and the possible causes of microwave-blanching related off-flavor. 

 

 

ABBREVIATIONS 

 
F - 

 Fan 

used 

 
MC   -  

Moisture content (wet basis) 

 
NF   -  

No fan used 

 
W.B.   - 

Wet basis 

background image

 

131

ACKNOWLEDGMENTS 

 

Funded in part by the North Carolina Agricultural Research Service. Paper 

no. --- of the Journal Series of the Dept. Food Science, North Carolina State 

University, Raleigh, NC 27695.  The use of trade names in this publication does not 

imply endorsement by North Carolina Agricultural Research Service or USDA, ARS 

of the products named nor criticism of similar ones not mentioned. 

background image

 

132

REFERENCES 

 

 

ADELSBERG, G.D. and SANDERS, T.H.  1997.  Effect of peanut blanching    
   protocols on bed and seed temperatures, seed moisture, and blanchability.   
   Peanut Science 24, 42-46. 
 
BAKER, G.L., CORNELL, J.A., GORBET, D.W., O’KEEFE, S.F., SIMS, C.A., and  
   TALCOTT, S.T.  2003. Determination of pyrazine and flavor variations in  
   peanut genotypes during roasting.  J. Food Sci. 68(1), 394-400. 
 
CHIOU, R.Y.-Y., CHANG, Y.-S., TSAI, T.-T., and HO, S.  1991.  Variation of  
   flavor-related characteristics of peanuts during roasting as affected by initial  
   moisture contents.  J. Agric. Food Chem. 39, 1155-1158. 
 
DIDZBALIS, J., RITTER, K.A., TRAIL, A.C., and PLOG, F.J.  2004.  Identification  
   of fruity/fermented odorants in high temperature cured roasted peanuts.  
   J. Agric. Food Chem. 52, 4828-4833. 
 
GIESE, J. 1992.  Advances in microwave food processing.  Food Technology  
   46(9), 118-123. 
 
HOLADAY, C.E. 1971.  Report of the peanut quality committee.  J.  
   American Peanut Research and Education Association 3, 238-241. 
 
JOHNSEN, P.B., CIVILLE, G.V., VERCELLOTTI, J.R., SANDERS, T.H., and  
   DUS, C.A.  1988. Development of a lexicon for the description of peanut flavor.   
   J. Sensory Studies 3, 9-17. 
 
KATZ, T.A.  2002. The effect of microwave energy on roast quality of microwave  
   blanched peanuts.

 MSc Thesis, pp. 87-88, North Carolina State University,  

   Raleigh, NC. 
 
LEE, S.-Y., TREZZA, T.A., GUINARD, J.-X., and KROCHTA, J.M.  2002. Whey- 
   protein-coated peanuts assessed by sensory evaluation and static headspace  
   gas chromatography. J. Food Sci. 67(3), 1212-1218. 
 
MEILGAARD, M.M. G.V. and CIVILLE,  B.T. Carr. 1999.  Selection and training of 

panel members. Pages 174-176 in Sensory Evaluation Techniques, 3

nd

 ed. CRC 

Press, Boca Raton, Fl.  

 
NASS.  2005.  USDA crop production 2004 summary.  National Agriculture  
   Statistics Service, Washington, DC. 
 
ORY, R.L., CRIPPEN, K.L. and LOVEGREN, N.V. 1992.  Off-flavors in peanuts  
   and peanut products. In: Developments in Food Science: Off-Flavors in  

background image

 

133

   Foods and Beverages

, Vol. 29, (G. Charalambous, ed.) pp. 57-75, Elsevier  

   Science Publishers, Amsterdam, The Netherlands. 
 
OSBORN, G.S., YOUNG, J.H., and SINGLETON, J.A.  1996.  Measuring the  
   kinetics of acetaldehyde, ethanol, and ethyl acetate within peanut kernels  
   during high temperature drying. Transactions of the ASAE 39(3), 1039-1045. 
 
OUPADISSAKOON, C., and YOUNG, C.T.  1984.  Modeling of roasted peanut  
   flavor for some Virginia type peanuts from amino acid and sugar contents.   
   J. Food Sci. 49, 52-58. 
 
SANDERS, T.H., ADELSBERG, G.D., HENDRIX, K.W. and MCMICHAEL, R.W.  
   1999.  Effect of blanching on peanut shelf-life.  Peanut Science 26, 8-13. 
 
SANDERS, T.H., BLANKENSHIP, P.D., VERCELLOTTI, J.R., and CRIPPEN,  
   K.L.  1990.  Interaction of curing temperature and inherent maturity distributions  
   on descriptive flavor of commercial grade sizes of Florunner peanuts.  Peanut  
   Science 17, 85-89. 
 
SANDERS, T.H., PATTEE, H.E., VERCELLOTTI, J.R. and BETT, K.L.  1995.  
   Advances in peanut flavor quality. In: Advances in Peanut Science, (H.E. Pattee  
   and H.T. Stalker, eds.) pp. 528-553, American Peanut Research and Education  
   Society, Inc., Stilwater, OK. 
 
SANDERS, T.H., VERCELLOTTI, J.R., BLANKENSHIP, P.D., CRIPPEN, K.L.,  
   and CIVILLE, G.V.  1989.  Interaction of maturity and curing temperature on   
   descriptive flavor of peanuts. J. Food Sci. 54(4), 1066-1069. 
 
SANDERS, T.H., VERCELLOTTI, J.R., and GRIMM, D.T. 1993.  Shelf life of  
   peanuts and peanut products.  In: Shelf Life Studies of Foods and  
   Beverages

. (G. Charalambous, ed.) pp. 289-309, Elsevier Science Publishers,  

   Amsterdam, The Netherlands:  
 
SINGLETON, J.A. and PATTEE, H.E.  1991.  Peanut moisture/size, relation to  
   freeze damage and effect of drying temperature on volatiles.  J. Food  
   Sci. 56(2), 579-581. 
 
SINGLETON, J.A., and PATTEE, H.E.  1992.  Maturity and storage affect freeze  
   damage in peanuts.  J. Food Sci. 57(6), 1382-1384. 
 
ST. ANGELO, A.J., KUCK, J.C., HENSARLING, T.P. and ORY, R.L.  1977.   
   Effects of water and spin blanching on oxidative stability of peanuts.  J.  
   Food Processing and Preservation 1, 249-260. 
 
SYARIEF, H., HAMANN, D.D., GIESBRECHT, F.G., YOUNG, C.T. and  
   MONROE, R.J.  1985.  Interdependency and underlying dimensions of sensory  

background image

 

134

   flavor of selected foods.  J. Food Sci. 50, 631-638. 
 
VERCELLOTTI, J.R., CRIPPEN, K.L., LOVEGREN, N.V., and SANDERS, T.H.   
   1992.  Defining roasted peanut flavor quality. Part 1. Correlation of GC volatiles  
   with roast color as an estimate of quality. In: Developments in Food Science:  
   Food Science and Human Nutrition

, Vol. 29, (G. Charalambous, ed.) pp. 183- 

   206, Elsevier Science Publishers, Amsterdam, The Netherlands. 
 
WARNER, K.J.H., DIMICK, P.S., ZIEGLER, G.R., MUMMA, R.O., and  
   HOLLENDER, R.  1996. "Flavor-fade" and off-flavors in ground roasted  
   peanuts as related to selected pyrazines and aldehydes. J. Food Sci.  
   61(2), 469-472. 
 
YOUNG, C.T., and HOVIS, A.R.  1990. A method for the rapid analysis of  
   headspace volatiles of raw and roasted peanuts. J. Food Sci. 55(1), 279-280. 

 

            

background image

 

135

TABLE LEGENDS 

 

 
Table 1.  Microwave application parameters and resulting blanching efficiency 

 

Table 2.  Lexicon of peanut flavor descriptors (modified from Johnsen et al., 1988; 

and Sanders et al., 1989) 

 

Table 3.  Means separation of blanching treatments by sensory attribute 

 

Table 4.  Correlations between peanut flavor attributes 

 

Table 5.  Maximum internal temperature in peanuts by treatment 

 

Table 6.  Moisture content of peanuts after blanching 

 

 

background image

 

136

 

TABLE 1. 

MICROWAVE APPLICATION PARAMETERS AND RESULTING BLANCHING 

EFFICIENCY 

 

Treatment Airflow 

during 

processing

Average Blanching 

Efficiency (%) 

4 minutes 

With fan 

42.2 

4 minutes 

Without fan 

59.1 

5 minutes 

With fan 

52.8 

5 minutes 

Without fan 

77.8 

8 minutes 

With fan 

66.7 

8 minutes 

Without fan 

90.0 

11 minutes 

With fan 

77.7 

11 minutes 

Without fan 

90.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 

137

 
 

TABLE 2. 

LEXICON OF PEANUT FLAVOR DESCRIPTORS  

(MODIFIED FROM JOHNSEN ET AL., 1988; AND SANDERS ET AL., 1989)   

Roast Peanutty 

The aromatic associated with medium-roast peanuts (about 3-4 on USDA 
color chips) and having fragrant character such as methyl pyrazine 

Sweet Aromatic 

The aromatics associated with sweet material such as caramel, vanilla, 
molasses 

Other Aromatics 

Other aromatics detected in the sample 

Dark Roast 

The aromatic associated with dark roasted peanuts (4+ on USDA color 
chips) and having very browned or toasted character 

Raw/Beany The 

aromatics 

associated with under-roasted peanuts or beans 

Woody/Hulls/Skins 

The aromatics associated with base peanut character (absence of fragrant 
top notes) and related to dry wood, peanut hulls, and skins 

Cardboardy/Stale 

The aromatic associated with somewhat oxidized fats and oils and 
reminiscent of cardboard 

Earthy/Musty/Wet Dirt 

The aromatic associated with wet dirt and mulch 

Painty/Old Oil 

The aromatic associated with linseed oil, oil based paint 

Plastic/Chemical The 

aromatic associated with plastic and burnt plastics 

Fruity/Fermented The 

aromatic 

associated with fruity or fermented foods 

Ashy The 

aromatic 

associated with cigarette ash 

Sweet 

The taste on the tongue associated with sugars 

Sour 

The taste on the tongue associated with acids 

Bitter 

The taste on the tongue associated with bitter agents such as caffeine or 
quinine 

Astringency 

A chemical feeling factor on the tongue and oral tissues, described as 
puckering/dry and associated with tannins or alum 

Tongue and  
Throat Burn 

A chemical feeling factor described as a burning sensation on the tongue or 
throat 

Metallic 

A chemical feeling factor on the tongue described as flat, metallic and 
associated with iron and copper 

Total Off-note 

A term summarizing the overall degree to which a sample exhibits off-
flavors, as compared to the reference 

 
 

background image

 

138

TABLE 3. 

MEANS SEPARATION OF BLANCHING TREATMENTS BY SENSORY ATTRIBUTE 

 

Treatment Control 

4 min, 

Fan 

4 min,  

w/o Fan 

5 min, 

Fan 

5 min, 

w/o Fan 

8 min,  

Fan 

8 min,  

w/o Fan 

11 min,  

Fan 

11 min, 

w/o Fan 

LSD

a

 

Roast Peanutty 

4.33

b

 4.36  4.55  4.65 4.40 4.33 4.45  4.40 4.28 0.13 

Sweet Aromatic 

2.89 2.90  3.04  2.90 

2.94 2.88 2.88  2.88 2.81 0.11 

Dark Roast 

3.02 2.82  2.92  3.00 

2.75 2.87 3.03  2.97 3.26 0.14 

Raw Beany 

2.05 2.30  2.23  2.18 

2.45 2.28 2.12  2.23 1.90 0.16 

Woody/Hull/Skins 

3.09 3.06  3.06  3.08 

3.04 3.02 3.04  3.08 3.11 0.09 

Cardboardy/Stale 

0.61 0.95  0.92  0.99 

0.88 1.06 0.81  1.06 1.16 0.28 

Sweet Taste 

2.54 2.65  2.62  2.54 

2.63 2.61 2.57  2.54 2.49 0.11 

Bitter 

3.27 3.27  3.22  3.30 

3.28 3.26 3.28  3.29 3.38 0.10 

Astringency 

1.02 1.04  1.01  1.02 

1.01 1.01 1.00  1.03 1.01 0.04 

Ashy 

0.54 0.38  0.38  0.51 

0.47 0.49 0.62  0.55 0.82 0.22 

Total Offnote 

1.19 1.32  1.24  1.56 

1.40 1.56 1.28  1.61 2.25 0.33 

 

a

LSD = Least Significant Difference 

b

Attribute intensities were scored using the 15-point Spectrum

TM

 universal intensity scale (Meilgaard et al., 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 

139

 

TABLE 4. 

CORRELATIONS BETWEEN PEANUT FLAVOR ATTRIBUTES 

 

  

Sweet 

Aromatic 

Dark 

Roast 

Raw 

Beany 

Woody / 

Hull/Skins 

Cardboardy

/Stale 

Sweet 

Taste 

Bitter Astringency Ashy 

Total 

Offnote 

Roast Peanutty 

0.77

a

 

-0.35 0.48  -0.46 

-0.41  0.57 -0.67  -0.13 

-0.55 -0.76 

Sweet Aromatic 

 

-0.53 0.59  -0.52 

-0.37 

0.81 -0.81 

-0.17 

-0.76 -0.79 

Dark Roast 

 

 

-0.96 0.78  -0.05 

-0.79 0.79 

-0.01 

0.89 0.71 

Raw Beany 

 

 

 

-0.79 

0.08 

0.77 -0.85 

-0.01 

-0.88 -0.72 

Woody/Hull/Skins 

      -0.20 

-0.66 0.79 

0.25 

0.81 0.63 

Cardboardy/Stale 

     

 

-0.31 

0.11 

-0.26 

0.08 

0.50 

Sweet Taste 

 

 

 

 

 

 

-0.85 

-0.08 

-0.86 -0.83 

Bitter 

     

    0.04 

0.89 0.82 

Astringency 

     

      

-0.05 

-0.12 

Ashy 

 

 

 

 

 

 

 

 

 

0.86 

 

    a

Numbers in bold represent significant correlations (p < 0.05) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

 

140

 

TABLE 5. 

MAXIMUM INTERNAL TEMPERATURE IN PEANUTS BY TREATMENT 

 

Treatment 

Mean temperature (°C) 

4 min., Fan 

  69.3 g

1

 

5 min., Fan 

  77.0 fg 

8 min., Fan 

  84.4 ef 

11 min., Fan 

  90.6 de 

 

 

4 min., No fan 

  92.0 de 

5 min., No fan 

  94.6 d 

8 min., No fan 

112.8 c 

11 min., No fan 

128.0 ab 

 

1

Values followed by the same letter are not significantly  

different (LSD = 9.8)

 

 
 
 
 

TABLE 6. 

MOISTURE CONTENT OF PEANUTS AFTER BLANCHING 

 

Treatment 

Moisture content after 

blanching (w.b.) 

Control 7.92 

a

1

 

4 min., Fan 

7.30 abc 

5 min., Fan 

7.54 ab 

8 min., Fan 

7.19 bc 

11 min., Fan 

6.92 c 

 

 

4 min., No fan 

7.78 a 

5 min., No fan 

7.36 abc 

8 min., No fan 

5.51 d 

11 min., No fan 

4.49 e 

 

1

Values followed by the same letter are not significantly different (LSD = 0.61)

 

 
 
 
 

background image

 

141

CHAPTER 5:   

CHARACTERIZATION OF AROMA-ACTIVE COMPOUNDS IN MICROWAVE 

BLANCHED PEANUTS 

 
 
 

Andriana V. Schirack

1

, MaryAnne Drake

1*

, Timothy H. Sanders

2

, K.P. Sandeep

 

 

1

Department of Food Science 

North Carolina State University, Raleigh, North Carolina 27695-7624 

 

2

USDA-ARS, Market Quality and Handling Research Unit 

North Carolina State University, Raleigh, North Carolina 27695-7624 

 

 

*Corresponding author: 

mdrake@unity.ncsu.edu 

Department of Food Science, Box 7624,  

North Carolina State University, Raleigh, North Carolina 27695-7624 

 

 

Running title:  Aroma compounds in blanched peanuts… 

 
 

Submitted for publication in Journal of Food Science. 

D. B. Lund, ed.  Institute of Food Technologists, Chicago, IL. 

background image

 

142

Abstract 

 

Microwave blanching of peanuts has been explored as an alternative to conventional 

oven methods based on its speed of operation, energy savings, and efficiency of 

process control. Although processing times can be greatly reduced, the occurrence 

of stale/floral and ashy off-flavors have been reported at high process temperatures.  

This study examined the chemical compounds responsible for this off-flavor using 

solvent extraction / solvent assisted flavor evaporation (SAFE), gas 

chromatography-olfactometry (GC/O), gas chromatography-mass spectrometry 

(GC/MS), and aroma extract dilution analysis (AEDA).  Select compounds were 

quantified based on AEDA results using SAFE and GC/MS.  Quantification, 

threshold testing, and analysis of model systems revealed increased formation of 

guaiacol and phenylacetaldehyde in the off-flavored peanuts which resulted in the 

burnt and stale/floral flavors noted by a trained panel.   

 
 
 
 
 
 
 
 
 
 

Key Words:  microwave, peanut, off-flavor, gas chromatography-olfactometry, 

threshold

background image

 

143

Introduction 

 

The most common use of world peanut production remains the crushing of 

peanuts for oil and meal.  However, the proportion of peanuts used for other food 

products has steadily increased (Revoredo and Fletcher 2002).  The unique flavor of 

roasted peanuts drives product marketing for products such as peanut butter and 

confections.  This flavor is the result of genetics, production, handling, storage, and 

processing factors (Sanders and others 1995).   

The main sources of volatile flavor compounds in peanuts are non-enzymatic 

carbonyl-amine browning and lipid oxidation reactions, and include interactions 

between peanut components as well as thermal decomposition products and loss of 

volatiles (Hoffpauir 1953; Warner and others 1996).  Maillard reactions are primarily 

responsible for browning reactions in roasted peanuts, and produce pyrazines, 

pyrroles, furans, and other low molecular weight compounds.  In addition to Maillard 

products, carbonyls are produced by Strecker degradation and oxidation, but can 

then be lost by volatilization (Buckholz and others 1980).  Pyrazines, which are 

volatile heterocyclic nitrogen-containing compounds, are thought to be the major 

flavor compounds impacting roasted peanut flavor (Warner and others 1996). 

The causes of off-flavors in peanuts include lipid oxidation, induction of 

anaerobic respiration, and external contamination with compounds such as 

limonene, antioxidants, or insecticides (Ory and others 1992).  Lipid oxidation is one 

of the leading causes of off-flavors in raw and roasted peanuts, due to a high content 

of unsaturated fatty acids (Warner and others 1996; Lee and others 2002).  

Oxidation of the fatty acids in peanut oil can be caused by light, heat, air, metal 

background image

 

144

contamination, microorganisms or enzymatic activity (Ory and others 1992; Sanders 

and others 1993).  Hydroperoxides formed during lipid oxidation subsequently break 

down into alcohols, alkanes, ketones and aldehydes which can be the source of off-

flavors in the peanut.  Exposure to high temperatures, such as during the curing 

process, has also been correlated to the development of off-flavors (Whitaker and 

others 1974).  High concentrations of certain compounds such as ethanol, ethyl 

acetate, and acetaldehyde were found in high temperature cured peanuts (Pattee 

and others 1965).  In addition, fruity fermented off-flavor has been shown to occur 

predominantly in immature peanuts undergoing high temperature curing (Sanders 

and others 1989; Didzbalis and others 2004).   

Most previous studies examining the effects of processing techniques on 

peanut flavor have concentrated on high temperature curing.  However, new 

processing technologies have been developed which can improve production 

efficiency but can also impact flavor quality.  For example, microwave technology 

has been investigated as an alternative method for the drying (Delwiche 1986) and 

roasting of peanuts (Megahed 2001; Yoshida and others 2005).  Although 

microwave roasting led to formation of undesirable lipid oxidation products, the use 

of microwaves for blanching has potential as an alternative to traditional blanching 

methods due to the speed of operation, energy savings, and efficiency of process 

control.  However, during high temperature microwave treatments, an off-flavor has 

been observed which was related to other off-flavors such as cardboardy, ashy, and 

bitter, and was related inversely

 

to positive attributes such as roast peanutty and 

sweet aromatic (Schirack and others 2006).     

background image

 

145

The objective of this study was to investigate the off-flavor formed in peanuts 

during the high temperature heating step of microwave blanching through 

instrumental volatile analysis and model systems.  The identification of the 

compounds responsible for the off-flavor could enable better quality control and may 

ultimately aid in the adoption of alternative blanching methods in peanut processing. 

 

Materials and Methods

 

Peanuts 

    

Medium-grade size, runner-type peanuts (Arachis hypogaea L., variety 

Georgia Green) at an average moisture content of 7 % (wet basis) were obtained 

from a single harvested lot from USDA, ARS, National Peanut Research Laboratory 

(Dawson, Georgia).  The peanuts were harvested, cured, shelled, sized, and stored 

according to normal practices prior to delivery to Raleigh, NC.  Peanuts were heated 

as part of the blanching process using a 5 kW, 915 MHz microwave unit (Industrial 

Microwave Systems, Morrisville, NC) using the equipment and methods detailed 

previously in Schirack and others (2006).   A filled conveyor of peanuts 

(approximately 6 kg) was exposed to the microwave field for 11 minutes in a 

continuous process, in which internal peanut temperatures were as high as 128 °C.  

Immediately after heating, peanuts were cooled to room temperature using forced 

ambient air.  The control sample was peanuts undergoing the same preparation and 

storage procedures but which were not treated with microwave energy.  The peanuts 

were roasted before descriptive sensory and instrumental analysis, in order to 

approximate the impact of the off-flavor on commercial products, such as 

background image

 

146

confections and peanut butter.  The peanuts were also roasted to avoid interference 

of the strong raw/beany note of unroasted peanuts with off-flavor detection 

(Didzbalis and others 2004).   

    

An 800 g sample for each replicate was roasted and processed into paste for 

sensory and instrumental analysis.  A thermostat-controlled Aeroglide Roaster was 

used (Aeroglide Corporation, Raleigh, NC) to roast samples at 177 °C for the time 

needed to achieve L values in the range of 48-52 (Vercellotti and others 1992) using 

a Hunter LAB DP-9000 colorimeter (Hunter Associates Laboratory, Reston, VA).  

Samples were ground into paste using a food processor (Cuisinart Little Pro Plus, 

Cuisinart Corporation, East Windsor, NJ).  A grind / cool protocol was used to 

prevent overheating of the paste, as discussed by Sanders and others (1989). 

Samples were kept frozen at -20 °C in glass jars until evaluation.   

The peanut samples evaluated by instrumental analysis were selected based 

on sensory analysis results.  For descriptive sensory analysis, samples were coded 

with three digit random codes, and evaluated against controls for each of four 

processing replications.  The sensory panel consisted of 10 panelists, each with at 

least 40 h training in peanut sensory evaluation.  Panelists were trained with the 

Spectrum

TM

 Descriptive Analysis method using a 15 point intensity scale (Meilgaard 

and others 1999).  Each sample was evaluated in duplicate by each panelist.  

Samples were described using the peanut lexicon developed by Johnsen and others 

(1988) and Sanders and others (1989), with the addition of some attributes identified 

by the trained panel for these samples, such as ashy, as defined by the aroma of 

cigarette ash; and total offnote, an attribute which encompassed all negative 

background image

 

147

attributes which were different from the control.  The 11-minute blanching treatment 

was described by the panel (Table 1) as high in total offnote, cardboardy, and ashy 

(Schirack and others 2006).  As a result, the 11-minute blanching treatment sample 

and its process control were selected for instrumental volatile analyses. 

 

Chemicals   

   

Ethyl ether (anhydrous, 99.8 %), sodium chloride (99 %), sodium sulfate  

(99 %), 2-methyl-3-heptanone (internal standard for the neutral/basic fraction), and 

2-methylvaleric acid (internal standard for the acidic fraction) were obtained from 

Sigma-Aldrich Corporation (St. Louis, MO).  The standards for the aroma 

compounds listed in Table 3 were provided by the Sigma-Aldrich Corporation (St. 

Louis, MO) with the exception of tetradecanal (VWR, West Chester, PA).   

 

Static headspace gas chromatography

 

    

Static headspace chromatography was conducted to screen the most volatile 

flavor compounds in the sample as possible contributors to the microwave-related 

off-flavor.  Peanut samples were analyzed using 1g of peanut paste in a 10 mL 

crimp-top vial. An external standard of hexanal diluted in acetone at 104 ppm was 

used.  The sample was heated for 30 minutes at 150 °C with a carrier gas flow of  

17 mL/minute.  The headspace was sampled for 0.5 minutes using a Turbomatrix 40 

Headspace Sampler (Perkin Elmer Life and Analytical Sciences, Inc., Wellesley, 

MA). For separation and identification of headspace volatiles, a Perkin Elmer 

Autosystem XL gas chromatograph (GC) was coupled to a Perkin Elmer Turbomass 

background image

 

148

Gold mass spectrometer (MS; Perkin Elmer Life and Analytical Sciences, Inc., 

Wellesley, MA). The injector temperature was maintained at 150 °C.  Separations 

were performed on a fused silica capillary column (ZB-5, 30 m x 0.25 mm i.d., 1.0 

µm d

f

,; Phenomenex, Torrance, CA). The GC oven temperature was programmed to 

increase from 35 °C to 300 °C at a rate of 15 °C/minute with an initial and final hold 

time of 1 minute each. The carrier gas was helium with a flow rate of 0.83 

mL/minute, and the flow was split at a 20 to 1 ratio.  Mass spectrometer conditions 

were as follows: capillary direct interface temperature, 270 

C; ionization energy, 70 

eV; mass range, 50-300 a.m.u; EM voltage (Atune+306 V); scan rate, 0.5 scans/s. 

Each sample was evaluated in duplicate.   

 

Solvent extraction with solvent assisted flavor evaporation (SAFE)  

    

Compounds of a higher molecular weight were screened using a solvent 

extraction/SAFE technique to determine if they contribute to the microwave-related 

off-flavor.  One hundred grams of peanut paste was weighed and placed in Teflon 

bottles. Then, 100 mL of ethyl ether, 100 mL saturated sodium chloride solution, and 

2.45 ppm of internal standard (comprised of 2-methyl-3-heptanone and 2-methyl 

pentanoic acid in methanol) were added. The mixtures were shaken for 30 minutes 

on a Roto mix (Type 50800; Thermolyne Dubuque, IA) at high speed. The bottles 

were then centrifuged at 3000 rpm for 15 min in order to separate the solvent phase 

from the mixture, which was subsequently transferred to a glass jar. The procedure 

was repeated twice with the addition of 100 mL of ethyl ether to the sample each 

time.   

background image

 

149

    

Volatile compounds from the solvent extract were collected using solvent 

assisted flavor evaporation (SAFE). The assembly used was similar to that 

described by Engel and others (1999).  Distillation was carried out for 2 h under 

vacuum (ca. 10

-4 

Torr). The sample was loaded into the top of the SAFE apparatus, 

and released into the vacuum dropwise.  The SAFE apparatus was maintained at 50 

o

C with a circulating water bath.  After distillation, the distillate was concentrated to 

20 mL under a gentle stream of nitrogen gas.  

    

The concentrated distillate was washed twice with 3 mL sodium bicarbonate 

(0.5M) and vigorously shaken.  It was then washed three times with 2 mL saturated 

sodium chloride solution. The ether layer containing the neutral/basic fraction was 

collected, dried over anhydrous sodium sulfate, and concentrated to 0.5 mL under a 

gentle stream of nitrogen gas. Acidic volatiles were recovered by acidifying the 

aqueous phase with hydrochloric acid (18% w/v) to a pH of 2.0 and extracting the 

sample three times with 5 mL ethyl ether.  The sample was dried over anhydrous 

sodium sulfate before being concentrated to 0.5 mL under a nitrogen gas stream.   

 

Gas chromatography/olfactometry (GC/O) 

    

For GC/O analysis, an HP5890 series II gas chromatograph (Hewlett-Packard 

Co., Palo Alto, CA) equipped with a flame ionization detector (FID), sniffing port, and 

a splitless injector was utilized.  Both the neutral/basic and acidic fractions were 

analyzed from each extraction. Two microliters were injected onto a polar capillary 

column (DB-WAX, 30 m length x 0.25 mm i.d. x 0.25 

μm film thickness of stationary 

phase (d

f

); J. & W. Scientific, Folsom, CA) and a nonpolar column (DB-5MS, 30 m 

background image

 

150

length x 0.25 mm i.d. x 0.25 

μm d

f

; J & W Scientific, Folsom, CA).  Column effluent 

was split 1:1 between the FID and sniffing port using deactivated fused silica 

capillaries (1 m length x 0.25 mm i.d.).  The GC oven temperature was programmed 

to increase from 40 

o

C to 200 

o

C at a rate of 8 

o

C/min with an initial hold for 3 min 

and a final hold of 20 min. The FID and sniffing port were maintained at a 

temperature of 250 

o

C.  The sniffing port was supplied with humidified air at  

30 mL/min.  

Both post peak intensity and aroma extract dilution analysis (AEDA) were 

used to characterize the aroma properties and perceived intensities of the aroma-

active compounds in the solvent extracts (Van Ruth 2001; Grosch 1993).  Four 

experienced panelists with at least 40 hours of training sniffed the neutral/basic and 

acidic fractions of the solvent extracts on the two different columns.  For post peak 

intensity analysis, panelists described the odor and scored the intensity of odorants 

in the extracts using a 5-point numerical intensity scale (Van Ruth 2001).   For 

AEDA, the solvent fractions were serially diluted at a ratio of 1:3 (v/v) with diethyl 

ether and sniffed (using a DB-WAX column for acidic fractions, and a DB-5MS 

column for neutral basic fractions) until no odorants were detected by the panelists.   

 

Gas chromatography/mass spectrometry (GC/MS) 

    

For GC/MS analysis of the solvent extracts, a 6890N GC/5973 mass selective 

detector (Agilent Technologies, Inc., Palo Alto, CA) was used.  Separations were 

performed on a fused silica capillary column (DB-5MS, 30 m length x 0.25 mm i.d. x 

background image

 

151

0.25 

μm d

f

; J & W Scientific, Folsom, CA).  Helium gas was used as a carrier at a 

constant flow of 1 mL/min.  Oven temperature was programmed to increase from  

40 

o

C to 200 

o

C at a rate of 2 

o

C/min with initial and final hold times of 5 and 30 min, 

respectively.  Mass selective detector conditions were as follows: capillary direct 

interface temperature, 250 

o

C; ionization energy, 70 eV; mass range, 50-300 a.m.u; 

EM voltage (Atune+200 V); scan rate, 2.94 scans/s.  Each extract (1 

μL) was 

injected in duplicate in the splitless mode.   

   

Identification of odorants  

    

Retention indices (RI) were calculated using an n-alkane series (Van den 

Dool and Kratz 1963).  For positive identifications, RI, mass spectra, and odor 

properties of unknowns were compared with those of standard compounds analyzed 

under identical conditions.  Tentative identifications were based on comparing mass 

spectra of unknown compounds with those in the mass spectral database of the 

National Institute of Standards and Technology (1992) and by matching the RI 

values and odor properties of unknowns against published values in the Kovacs 

retention indices located at http://www.flavornet.org. 

 

Quantification of odorants 

    

Relative abundance of compounds was calculated relative to the peak areas 

of 2-methyl-3-heptanone (for the neutral/basic fraction) or 2-methylvaleric acid (for 

the acidic fraction).  In the cases when target flavor compounds coeluted with other 

peanut volatiles, an extracted ion search was used for quantification.  For guaiacol 

background image

 

152

(m/z 124 and 109), toluene (m/z 91), heptanal (m/z 96 and 114), tetradecanal (m/z 

96 and 194), 2-phenylethylalcohol (m/z 91), 2-methylbutanal (m/z 86 and 56), 1,4-

butanediol (m/z 71 and 57), the specific ions in parenthesis were monitored during 

analysis.   The response factors of selected compounds were determined by direct 

addition of known amounts of standards to odor-free water prior to solvent extraction 

and SAFE.  Response factors for the compounds were calculated using a five-point 

standard curve on a DB-5 column (DB-5MS, 30 m length x 0.25 mm i.d. x 0.25 

μm 

d

f

; J & W Scientific, Folsom, CA) using GC/MS (6890N GC/5973 MSD; Agilent 

Technologies, Inc., Palo Alto, CA).  The selected compounds were then quantified 

using the response factor and the peak area ratio of the compound to the internal 

standard. 

 

Threshold testing 

    

Orthonasal detection thresholds of acetophenone, phenylacetaldehyde, and 

2,6-dimethylpyrazine (in oil) and toluene, acetophenone and 2,6-dimethylpyrazine (in 

water) were determined using the forced choice ascending concentration series 

method of limits (ASTM practice E 679-91).  Compounds were diluted in methanol 

(for the water threshold) or in vegetable oil (oil threshold) before addition to the 

matrix of either deodorized water or vegetable oil.  Deodorized water was prepared 

by boiling deionized water to two-thirds of its volume.  The vegetable oil (Wesson, 

ConAgra Foods, Omaha, NE) was obtained at a local grocery store.  The compound 

concentrations were serially diluted by a factor of three for each level in the 

threshold test, and a seven level series was used.  Blank samples in each set were 

background image

 

153

adjusted with the same concentration of methanol to eliminate any bias due to the 

solvent used.  Each 2-ounce sample cup (Sweetheart Cup Company, Inc., Owings 

Mills, MD) was filled to 20 mL and allowed to equilibrate for one hour before testing.  

All sample preparation and testing was done with the lights off to minimize 

compound degradation during this time.  Each level in the series was presented in a 

randomized order.   

    

Panelists were asked to choose the different sample out of a set of three, and 

to indicate whether they were guessing.  The individual best estimate threshold was 

calculated by taking the geometric mean of the last concentration which was 

incorrect, and the first concentration which was correct with no further samples 

missed.  The group threshold was calculated as the geometric mean of the individual 

best estimate thresholds.  Thirty five panelists were used.  The panelist’s degree of 

certainty was used to adjust the best estimate threshold according to the method in 

Lawless and others (2000).   

 

Sensory evaluation of peanut models 

    

Sensory analysis of model systems was conducted to further investigate the 

compounds responsible for the off-flavor caused by high temperature microwave 

blanching in peanuts.  Flavor models were prepared from peanut paste which was 

chosen based on absence of off-flavor.  The peanut paste was divided into 15 g 

portions, and the compounds were introduced by a disposable pipet. After addition 

of the chemicals, the peanut paste was stirred for 30 s and then equilibrated for 2 h 

prior to sensory analysis.   

background image

 

154

    

Phenylacetaldehyde, guaiacol, and 2,6-dimethylpyrazine were prepared in 

methanol for aroma evaluation or in 95 % ethanol for flavor evaluation across the 

concentration range found in the peanut samples by quantification (Table 2). The 

peanut models were evaluated in duplicate for aroma or flavor by 6 highly trained 

panelists, each with > 150 h of training in the sensory evaluation of peanuts. 

 
 

Results and Discussion 

 

 
Sensory analysis 

The sensory attributes of high-temperature microwave-blanched peanuts 

were described previously (Table 1) by a descriptive sensory panel (Schirack and 

others 2006).  Peanuts which had been microwave blanched were significantly 

higher (P < 0.05) in total offnote, which is a term encompassing all negative aspects 

of the sample which are different from a reference.  The total offnote term was 

introduced to the current peanut lexicon (Johnsen and others 1988; Sanders and 

others 1989) for this study, because the descriptive panel had some difficulty in 

agreeing to the exact nature of the off-flavor.  Based on the other attribute scores 

which were significantly higher (P < 0.05) than the process control, the microwave 

blanched peanuts also displayed higher intensities of dark/ashy, bitter, and 

cardboardy/stale notes, which also may contribute in part to the total offnote score.   

Further descriptive panels were conducted with experienced panelists to 

more fully describe the nature of the off-flavor.  Over the course of five sessions, the 

panelists agreed that the distinct off-flavor of microwave blanched peanuts (which 

had an average total offnote score of 2.0 on a 15 point intensity scale) was best 

background image

 

155

characterized by the attributes of stale/floral, cardboardy, and burnt/ashy.  Product 

references such as cigarette ash for the burnt/ashy attribute were very useful, 

although the development of clear chemical anchors would be even more beneficial 

in further clarifying this total offnote attribute to panelists. 

 

Static headspace analysis 

Static headspace analysis was conducted as the first step to screen the 

samples for compounds contributing to the microwave-related off-flavor.  In this 

analysis, no unique volatile compounds were found in the off-flavored sample which 

were not present in the process control (data not shown).  This technique did isolate 

compounds which have been previously identified with flavor deterioration in high 

temperature-cured peanuts such as hexanal, 3-methylbutanal, and 2-methylpentanal 

(Pattee and others 1965).  However, the compound concentrations in the control and 

off-flavored samples were not significantly different (P < 0.05). Most compounds 

which are similar in volatility to hexanal can be lost during roasting (Ory and others 

1992).  In addition, this extraction technique isolates only the most volatile and 

lowest molecular weight flavor compounds.  This could explain why flavor 

differences detected in roasted peanuts by the sensory panel were not reflected in 

static headspace results.  As a result, the static headspace method was deemed not 

suitable in differentiating the microwave blanched samples from the control peanuts 

and was not investigated further.   

 

 

background image

 

156

Gas Chromatography-Olfactometry

 

Over 200 aroma-active compounds were detected through gas 

chromatography-olfactometry (GC/O) in the peanut samples, which is consistent 

with reviews of the flavor compounds in peanuts in the literature (Pattee and 

Singleton 1981).  Although many flavor compounds have been documented in 

peanuts, systematic studies of the relative importance and balance of the flavor 

compounds in peanuts are lacking.  In this study, aroma extract dilution analysis 

(AEDA) was used to narrow the list of compounds which may have the most impact 

on the flavor.  In AEDA, solvent extracts were serially diluted by a factor of 3 until no 

odorants were detected by the panelists.  The compounds with dilution factors (FD) 

greater than 5 for the process control and the off-flavored peanuts are shown for 

both the neutral/basic and acidic fractions (Table 3).  Of the 38 compounds with the 

highest FD values, 26 were positively identified using odor properties, retention 

indices, and mass spectra; 10 were tentatively identified using odor properties and 

retention indices in comparison to standards; and two compounds remained 

unidentified.   

Maillard reaction products and lipid oxidation products are known to affect 

peanut flavor.  The impact of pyrazines, which have long been associated with the 

characteristic flavors of peanuts (Mason and Johnson 1966; Johnson and others 

1971) was both increased and lessened in the microwave blanched samples.  For 

example, the FD factor of 2,5-dimethyl-3-ethylpyrazine (brothy) was lower in the off-

flavored samples, while 2,6-dimethylpyrazine (nutty/earthy) and 2-ethyl-5-

methylpyrazine (fruity) FD factors were higher.  Lipid oxidation compounds, such as 

background image

 

157

(E,E)-2,4-decadienal (fried/oxidized), (E,Z)-2,4-heptadienal (fatty), nonanal 

(green/floral), decanal (fried), and heptanal (fatty) were found in both the control and 

off-flavored peanuts.  Products such as nonanal and decanal are formed from 

monohydroperoxide precursors during linoleate oxidation (Min and others 1989).  

While some of these compounds such as heptanal are associated with cardboard or 

rancid off-flavors (Warner and others 1996), other lipid oxidation compounds such as 

hexanal and 2,4-decadienal have been documented in good quality peanuts 

(Vercellotti and others 1992b).  Based on AEDA results, the role of lipid oxidation 

compounds in microwave-related off-flavor was not clear. 

GC/O results correlate with quantitative differences best when olfactometry 

differences between samples are high (Cullere and others 2004). Seventeen 

compounds had the largest differences in AEDA results between the process control 

and microwave-blanched peanuts (i.e., differences in FD factors of 3 or more).  

These compounds included floral compounds such as phenylacetaldehyde (rosy) 

and geranyl buyrate (rosy); fatty compounds such as (E,E)-2,4-decadienal 

(fried/oxidized), (E,Z)-2,4-heptadienal (fatty), and (E)-2-hexenoic acid (fatty); sweet 

or fruity compounds such as 4-ethylbenzaldehyde (burnt sugar), benzaldehyde 

(sweet/malty), toluene (sweet/chemical), 2,3-butanediol (fruity), tetradecanal 

(honey/hay), methyl cinnamate (strawberry), 2-methylbutanal (chocolate/malty), and 

2-ethyl-5-methylpyrazine (sweet/fruity); savory compounds such as 2,6-

dimethylpyrazine (nutty/earthy) and 2,5-dimethyl-3-ethylpyrazine (brothy ); and 

others such as guaiacol (burnt/smoky), and delta-elemene (wood).  Many of these 

compounds have been reported previously in peanuts (Mason and others 1967; 

background image

 

158

Johnson and others 1971; Clark and Nursten 1977; Ho and others 1981; Vercellotti 

and others 1992).  Specifically, several of these compounds have been associated 

with off-flavors in peanuts, such as 2,3-butanediol (Ory and others 1992), and 2-

methylbutanal, which has been correlated to an “aging” off-flavor (Young and Hovis 

1990).  In addition, 2,6-dimethylpyrazine, 2-ethyl-5-methylpyrazine, 2-ethyl-3,5-

dimethylpyrazine, phenylacetaldehyde, and guaiacol (2-methoxyphenol) were 

identified in high temperature cured peanuts by Didzbalis and others (2004). 

It is important to note that AEDA is only a semi-quantitative technique, and it 

does not establish that compounds are present in concentrations above sensory 

threshold.  AEDA also does not reflect the impact of the food matrix on the 

perception and odor properties of a compound.   In fact, although the FD factors are 

relative to the compounds’ concentration in the extract, they are not measures for 

perceived odor intensity (Grosch 1993).  No compound in the AEDA results by itself 

gave the exact odor noted in microwave-blanched peanuts.  This indicated that the 

microwave-related off-flavor may be influenced by the other compounds in the food 

matrix or caused by a combination of compounds that are present in both samples, 

but at different concentration levels. 

  

In order to compare volatile concentrations across samples, the relative 

abundances of compounds identified by GC/O were calculated using relative 

abundance:  {(peak area of internal standard/concentration of internal standard) = 

(peak area of compound/concentration of compound)}.  The relative abundance 

values for compounds which were not further quantified are seen in Table 4.  Many 

of the compounds in the acid fractions of the solvent extract were not different in 

background image

 

159

flavor dilution factors, nor did they possess a unique character that could potentially 

contribute to the microwave-related off-flavor.  Many of these compounds had a 

sweet or burnt sugar odor which can be expected from Maillard reaction products.  

An examination of the relative abundances revealed compounds which were below 

reported thresholds or which had no consistent differences between samples for this 

set of compounds. 

 

Quantification

 

Select compounds were quantified by analysis of standards in deodorized 

water using solvent extraction, SAFE, and GC-MS analysis.  Compounds were 

chosen for further quantification if they had large differences in AEDA results 

between the off-flavored peanuts and the control, or if they had been tied to off-

flavors in the peanut literature (i.e., lipid oxidation compounds).  A selection of 

pyrazines was also quantified to determine whether these decreased in 

concentration in the off-flavored peanuts, because coincident decreases in the 

roasted peanutty attribute have been documented with other off-flavors in peanuts 

(Sanders and others 1989; Didzbalis and others 2004).  The nine compounds 

selected for quantification included: one compound possibly contributing to the burnt 

note in the off-flavored peanuts (guaiacol), a compound possibly adding the 

stale/floral attribute noted by the sensory panel (phenylacetaldehyde), two pyrazines 

(2,6-dimethylpyrazine, and 2,3-diethyl-5-methylpyrazine), two compounds with sweet 

odors (acetophenone, toluene), and three lipid oxidation compounds (nonanal, 

background image

 

160

decanal, 2,4-decadienal).  A five point standard curve was used, and for all 

compounds, the linear fit had an R

2

 

 

92%.  

 

The results of quantification (Table 5) support the descriptive panel comments 

used to describe the off-flavor. The microwave-blanched peanuts were described as 

being more burnt/ashy, which could be due to an increase in guaiacol, and more 

stale/floral, which could be due to the increase in phenylacetaldehyde.  The samples 

were not differentiated in levels of acetophenone or nonanal.  Although large FD 

differences were seen between the samples for toluene, quantification results did not 

support these differences, but the AEDA differences may have been complicated 

due to coelution with the solvent peak during GC/O.   

 

Threshold determination

 

In order to clarify quantification results, threshold analyses were conducted to 

gauge human perception of these compounds.  Detection threshold values for the 

quantified compounds which were not available in the literature were determined 

experimentally using the ASTM ascending forced choice method of limits procedure 

(Table 5).  Because peanuts are composed of approximately 50% fat (Hoffpauir 

1953), both the water and oil thresholds were evaluated.  Based on these threshold 

values, guaiacol, phenylacetaldehyde, 2,6-dimethylpyrazine, and 2,3-diethyl-5-

methylpyrazine had the most impact on the flavor of these samples.  

Phenylacetaldehyde, 2,6-dimethylpyrazine, and 2,3-diethyl-5-methylpyrazine 

concentrations in both control and off-flavored samples were above the threshold 

values.  Not only were guaiacol concentrations in the off-flavored peanuts double 

background image

 

161

that of the control, but only in the off-flavored peanuts did the concentrations exceed 

the compound’s threshold in oil.  Toluene, acetophenone, nonanal, decanal, and 

(E,E)-2,4-decadienal values were below the threshold values, either in the oil matrix 

or in both matrices. 

After threshold testing, the odor activity value (OAV) of each compound in 

different matrices was determined in the control and microwave-blanched peanuts 

(Table 5).  The OAV is the ratio of the compound concentration in a food to its 

sensory threshold.  The OAV can further identify those compounds having the most 

flavor impact (Guth and Grosch 1994).  In Emmentaler cheese, a high fat food, the 

oil threshold value was chosen to calculate OAV for evaluation of key compounds 

because the lipid phase predominated in the samples (Preininger and Grosch 1994). 

Similarly in this study, the OAVs in oil were compared due to the high lipid content of 

peanuts.  Phenylacetaldehyde, 2,6-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, 

and guaiacol had the highest OAV in oil of the compounds quantified.  The OAV 

values of phenylacetaldehyde, 2,6-dimethylpyrazine, and guaiacol were the highest 

in the off-flavored samples and were also approximately twice their OAV values in 

the control, which further supported the role of these compounds in the flavor profile 

of microwave-blanched peanuts.   

Phenylacetaldehyde has been previously found in peanuts (Mason and 

others, 1967), in lavender honey (Bouseta and others 1996), and in other foods such 

as chocolate (Schieberle and Pfnuer 1999).  Phenylacetaldehyde has also been 

linked to off-flavors, such as aroma deterioration in beer (Soares da Costa and 

others 2004) and rosy off-flavor in Cheddar cheese (Carunchia Whetstine and others 

background image

 

162

2005).  Phenylacetaldehyde is known to be generated in peanuts from phenylalanine 

through Strecker degradation (Mason and others 1967).  Phenylalanine is typically 

present as a flavor precursor in peanuts and makes up a significant portion of the 

free amino acids present (Newell and others 1967).  Guaiacol is found in strongly 

flavored cheeses (Suriyaphan and others 2001), and affected the sensory 

differences in Spanish aged wines (Cullere and others 2004). This phenolic 

compound has also caused medicinal or antiseptic off-flavors in apple juice (Orr and 

others 2000).   2,3-diethyl-5-methylpyrazine and 2,6-dimethylpyrazine have been 

correlated to peanut flavor (Mason and Johnson 1966; Maga 1982), and 2,3-diethyl-

5-methylpyrazine is a key odorant in bitter chocolate (Schieberle and Pfnuer 1999).   

Among these four key compounds, phenylacetaldehyde, guaiacol, and 2,6-

dimethylpyrazine were present at significantly different (P < 0.1) levels in the off-

flavored samples, and as a result were pursued as the possible source of the 

microwave-related off-flavor.  These three compounds are affected by increased 

temperatures.  Pyrazine formation begins above 100 °C, and yield increases as the 

temperature increases (Koehler and Odell 1970).  Although guaiacol can be 

produced by Alicyclobacillus spoilage (Orr and others 2000) and has been 

associated with the maturation of wine in oak barrels (Pollnitz and others 2004), 

most pertinently to peanut production, guaiacol is also a thermal degradation product 

of ferulic acid during the roasting process (Holscher and Steinhart 1994). Likewise, 

the kinetic rate of phenylacetaldehyde formation was significantly increased with 

increasing temperatures (Soares da Costa and others 2004).  During peanut 

blanching, the microwave process temperatures reached up to 128 °C, which may 

background image

 

163

be high enough for pyrazine formation, and could explain the increased formation of 

phenylacetaldehyde and guaiacol.   

Interestingly, lipid oxidation compounds did not appear to have a role in 

microwave-related off-flavor.  This is consistent with the literature, as Katz (2002) 

found that microwave-blanched peanuts were more oxidation stable than oven-

blanched peanuts as evident by lower peroxide values and higher oxidative stability 

index.  In addition, Maillard reaction products in peanuts such as reductones are free 

radical scavengers which could further prevent formation of oxidation products 

(Sanders and others 1993). 

 

Model systems

 

In order to examine the effects of these compounds at their relative 

concentrations in a food matrix, phenylacetaldehyde, guaiacol, and 2,6-

dimethylpyrazine were added singly and in combination to a freshly roasted peanut 

paste free of off-flavors (Table 2).  Although these compounds individually had 

distinct aromas during GC/O of rosy (phenylacetaldehyde), smoky/burnt (guaiacol), 

and nutty/earthy (2,6-dimethylpyrazine), the flavor profile of the reference paste 

changed in different ways upon compound addition, emphasizing the effect of 

compound concentration and the effect of other components in the matrix.   

In aroma evaluation, 6 out of 6 panelists agreed that the addition of 

phenylacetaldehyde, guaiacol, and 2,6-dimethylpyrazine singly at the average 

concentrations found during quantification, created notable and negative differences 

from the control.  In each of these models, a decrease in roasted peanutty aroma 

background image

 

164

was also observed.  The addition of phenylacetaldehyde caused a green/plant-like 

note, while the addition of guaiacol gave a darker roast character to the model as 

compared to the control.  2,6-dimethylpyrazine, although adding a sweet, caramel 

note at lower concentrations, became perceived as a sweet and rotten aroma at 

higher concentrations.  In the tasting models, phenylacetaldehyde added a 

green/plant-like note at low concentrations, but created a stale/cardboardy character 

at higher concentrations.  Guaiacol added astringency, bitterness, and more ashy 

and woody character to the flavor.  2,6-dimethylpyrazine added rotten notes to the 

flavor, and also contributed to the perception of dark roast flavor.  A combination of 

these three compounds at their respective concentrations found in microwave 

blanched peanuts created an aroma profile high in dark roast character, with more 

astringency and tongue and throat burn, and less impact of positive characteristics 

such as roasted peanutty attribute.  The panel agreed that the combination of 

phenylacetaldehyde, guaiacol, and 2,6-dimethylpyrazine each at a concentration of 

one standard deviation above the average concentration found in the microwave-

blanched samples appeared to most closely mimic the off-flavor in microwave-

blanched peanuts.   

The unique characters of these three compounds combine to form an off-

flavor which is difficult to define.  Further work must be conducted to clarify the role 

of 2,6-dimethylpyrazine.  However, it appears that guaiacol contributes to the dark 

roast/burnt flavor perceived in the microwave samples, and phenylacetaldehyde is 

responsible for a green and cardboardy note which could be perceived as 

stale/floral.  In the future, these compounds could be used as chemical anchors for 

background image

 

165

sensory panelists analyzing process samples and would aid in the identification of 

process-related off-flavors.   

Conclusion 

More than 200 aroma-active compounds contributed to the flavor of roasted 

peanuts.  Maillard reaction, lipid oxidation, and thermal degradation products 

dominated the flavor profiles.  Isolation of the compounds causing a microwave-

related off-flavor in peanuts was possible through solvent extraction/SAFE, GC/O, 

GC/MS, threshold testing and model systems analysis.  The stale/floral and ashy off-

flavor in microwave-blanched peanuts was related to increased concentrations of 

phenylacetaldehyde, guaiacol, and 2,6-dimethylpyrazine.  Increased and 

unfavorable levels of these compounds may have been formed through Maillard 

reactions and thermal degradation during the high temperatures attained during 

microwave blanching.  These findings are important because they further explore the 

relative balance of the many aroma-active compounds which have been 

documented in peanuts, and could possibly aid in enhancing quality control for 

alternative processing techniques in peanut production. 

 

Acknowledgments 

 

This research was funded in part by the North Carolina Agricultural Research 

Service. This is paper no. --- of the Journal Series of the Dept. Food Science, North 

Carolina State University, Raleigh, NC 27695.  The assistance of Mary Carunchia 

Whetstine, Lisa Oerhl Dean, Evan Miracle and Joy Wright is gratefully 

background image

 

166

acknowledged.  The use of trade names in this publication does not imply 

endorsement by North Carolina Agricultural Research Service or USDA, ARS of the 

products named nor criticism of similar ones not mentioned. 

background image

 

167

References

 

 
(ASTM) American Society for Testing and Materials.  1992.  Standard practice for  
   determination of odor and taste thresholds by a forced-choice method of limits.   
   E-679-91.  In: Annual book of standards.  15.07. Philadelphia, Pa.: ASTM. P  
   35-9. 
 
Bouseta A, Scheirman V, Collin S.  1996.  Flavor and free amino acid  
   composition of lavender and eucalyptus honeys.  J Food Sci 61(4): 683-687. 
 
Buckholz LL Jr, Daun H, Stier E, Trout R.  1980.  Influence of roasting time on  
   sensory attributes of fresh roasted peanuts.  J Food Sci 45: 547- 554. 
 
Carunchia Whetstine ME, Cadwallader KR, Drake MA.  2005.  Characterization  
   of aroma compounds responsible for rosy/floral flavor in Cheddar cheese.  J  
   Agric Food Chem 53: 3126-3132. 
 
Clark RG, Nursten HE.  1977.  Analysis of the sensory term ‘nutty’ and a list of  
   compounds claimed to be nutty.  International Flavours and Food Additives  
   8(5):197-201. 
 
Cullere L, Escudero A, Cacho J, Ferreira V.  2004.  Gas chromatography- 
   olfactometry and chemical quantitative study of the aroma of six premium  
   quality Spanish aged red wines. J Agric Food Chem 52: 1653-1660. 
 
Delwiche SR, Shupe WL, Pearson JL, Sanders TH, Wilson DM.  1986.   
   Microwave vacuum drying effect on peanut quality.  Peanut Science 13: 21-27. 
 
Didzbalis J, Ritter KA, Trail AC, Pflog FJ.  2004.  Identification of fruity/fermented  
   odorants in high temperature cured roasted peanuts. J Agric Food Chem 52:  
   4828-4833. 
 
Engel W, Bahr W, Schieberle P.  1999.  Solvent assisted flavour evaporation - a  
   new and versatile technique for the careful and direct isolation of aroma  
   compounds from complex food matrices.  Eur Food Res Technol 209: 237-241. 
 
Grosch W.  1993.  Detection of potent odorants in foods by aroma extract dilution  
   analysis.  Trends Food Sci Technol 4: 68-73. 
 
Guth H, Grosch W.  1994.  Identification of the character impact odorants of  
   stewed beef juice by instrumental analyses and sensory studies.  J Agric Food  
   Chem 42: 2862-2866. 
 
Ho C-T, Lee M-H, Chang SS.  1981.  Isolation and identification of volatile  
   compounds from roasted peanuts.  J Food Sci 47: 127-133. 
 

background image

 

168

Hoffpauir CL.  1953.  Peanut composition: relation to processing and utilization.   
   Agricultural and Food Chemistry 1(10): 668-671. 
 
Holscher W, Steinhart H.  1994.  Formation pathways for primary roasted coffee  
   aroma compounds.  In: Parliament TH, Morello MJ, McGorrin RJ, editors.   
   Thermally Generated Flavors: Maillard, Microwave, and Extrusion Processes.   
   Washington, DC: American Chemical Society. p 206-217. 
   
Johnsen PB, Civille GV, Vercellotti JR, Sanders TH, Dus CA.  1988.  
   Development of a lexicon for the description of peanut flavor.  J Sens Stud 3: 9- 
   17. 
 
Johnson BR, Waller GR, Foltz RL.  1971.  Volatile components of roasted  
   peanuts: neutral fraction. J Agric Food Chem 19(5): 1025-1027. 
 
Karagul-Yuceer Y, Drake MA, Cadwallader KR.  2004.  Evaluation of the  
   character impact odorants in skim milk powder by sensory studies on model  
   mixtures.  J Sens Stud  19: 1-13. 
 
Katz TA.  2002. The effect of microwave energy on roast quality of microwave  
   blanched peanuts. Master's Thesis, North Carolina State University, Raleigh,  
   NC. 
Koehler PE, Odell GV.  1970.  Factors affecting the formation of pyrazine  
   compounds in sugar-amine reactions.  J Agric Food Chem 18(5): 895-898. 
 
Lawless H, Harono C, Hernandez S.  2000.  Thresholds and supra-threshold  
   intensity functions for capsaicin in oil and aqueous based carriers.  J Sens Stud  
   15: 437-447. 
 
Lee S-Y, Trezza TA, Guinard J-X, Krochta JM. 2002. Whey-protein-coated  
   peanuts assessed by sensory evaluation and static headspace gas  
   chromatography. J Food Sci 67(3): 1212-1218. 
 
Maga JA.  1977.  Alkylpyrazine levels in various vegetable protein flours.   
   Lebensmittel Wissenschaft und Technologie 10(2): 100-101. 
 
Maga JA.  1982.  Pyrazines in foods: an update.  CRC Critical Reviews in Food  
   Science and Nutrition 16: 1-48. 
 
Mason ME, Johnson B.  1966.  Flavor components of roasted peanuts: some low  
   molecular weight pyrazines and a pyrrole. J Agric Food Chem 14(5): 454-460. 
 
Mason ME, Johnson B, Hamming MC.  1967. Volatile components of roasted  
   peanuts: the major monocarbonyls and some noncarbonyl components.  
   J Agric Food Chem 15(1): 66-73. 
 

background image

 

169

Megahed MG.  2001.  Microwave roasting of peanuts: effects on oil characteristics  
   and composition.  Nahrung/Food 45:  255-257. 
 
Meilgaard, MM, Civille GV, Carr BT.  1999.  Selection and training of panel 

members. In: Sensory Evaluation Techniques, 3

nd

 ed. Boca Raton, Fl: CRC 

Press.  p 174-176. 

 
Min DB, Lee, SH, Lee EC.  1989.  Singlet oxygen oxidation of vegetable oils.  In:  
   Min DB, Smouse TH, editors.  Flavor chemistry of lipid foods.  Champaign, IL:  
   American Oil Chemists' Society. p 57-97. 
 
Newell JA, Mason ME, Matlock RS.  1967.  Precursors of typical and atypical - 
   roasted peanut flavor.  J Agric Food Chem (5): 767- 772. 
 
Orr RV, Shewfelt RL, Huang CJ, Tefera S, Beuchat LB.  2000.  Detection of  
   guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by sensory  
   and chromatographic analyses and comparison with spore and vegetative cell  
   populations.  Journal of Food Protection 63: 1517-1522. 
 
Ory RL, Crippen KL, Lovegren NV.  1992.  Off-flavors in peanuts and peanut  
   products. In: Charalambous G, editor.  Developments in Food Science v. 29:  
   Off-Flavors in Foods and Beverages. Amsterdam, The Netherlands: Elsevier  
   Science Publishers. p 57-75. 
 
Pattee HE, Beasley EO, Singleton JA.  1965.  Isolation and identification of  
   volatile components from high-temperature-cured off-flavor peanuts.  J Food  
   Sci 30: 388-392. 
 
Pattee HE, Singleton JA.  1981.  Peanut quality: its relationship to volatile  
   components - a review. In: ACS Symposium Series - American Chemical  
   Society, no. 170.  p 147-161. 
 
Pollnitz AP, Pardon KH, Sykes M, Sefton MA.  2004.  The effects of sample  
   preparation and gas chromatograph injection techniques on the accuracy of  
   measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak  
   extracts by stable isotope dilution analysis.  J Agric Food Chem 52: 3244-3252. 
 
Preininger M, Grosch W.  1994.  Evaluation of key odorants of the neutral  
   volatiles of Emmentaler cheese by the calculation of odour activity values.  
   Lebensmittel Wissenschaft und Technologie 27: 237-244. 
 
Revoredo CL, Fletcher SM.  2002.  World peanut market: an overview of the past  
   30 years.  The Georgia Agricultural Experiment Station Research Bulletin 437:  
   1-24. 
 
Rychlik M, Schieberle P, Grosch W.  1998.  Compilation of thresholds, odor  

background image

 

170

   qualities, and retention indices of key food odorants.  Deutsche  
   Forschungsanstalt fur Lebensmittelchemie and Institut fur Lebensmittelchemie  
   der Technischen Univ. Munchen.  Garching, Germany.  50 p. 
 
Sanders TH, Pattee HE, Vercellotti JR, Bett KL.  1995. Advances in peanut flavor  
   quality. In: Pattee HE, Stalker HT, editors.  Advances in Peanut Science.   
   Stilwater, OK: American Peanut Research and Education Society, Inc.  p 528- 
   553. 
 
Sanders TH, Vercellotti JR, Blankenship PD, Crippen KL, Civille GV.  1989.   
   Interaction of maturity and curing temperature on descriptive flavor of peanuts.   
   J Food Sci 54(4): 1066-1069. 
 
Sanders TH, Vercellotti JR, Grimm DT.  1993.  Shelf life of peanuts and peanut  
   products.  In: Charalambous G, editor.  Shelf Life Studies of Foods and  
   Beverages. Amsterdam, The Netherlands: Elsevier Science Publishers. p 289- 
   309. 
 
Schieberle P, Pfnuer P.  1999.  Characterization of key odorants in chocolate.  In:  
   Flavor Chemistry: 30 years of progress.  New York: Kluwer Academic/Plenum   
   Publishers.  p 147-153. 
 
Schirack AV, Drake MA, Sanders TH, Sandeep KP.  2006.  Impact of microwave  
   blanching on the flavor of roasted peanuts.  J Sens Stud 21.  Forthcoming. 
 
Soares da Costa M, Goncalves C, Ferreira A, Ibsen C, Guedes De Pinho P, Silva  
   Ferreira AC.  2004.  Further insights into the role of methional and  
   phenylacetaldehyde in lager beer flavor stability.  J Agric Food Chem 52: 7911- 
   7917. 
 
Suriyaphan O, Drake MA, Chen XQ, Cadwallader KR.  2001.  Characteristic  
   aroma components of British Farmhouse Cheddar cheese.  J Agric Food Chem  
   49: 1382-1387. 
 
Van den Dool H, Kratz P. 1963.  A generalization of the retention index system  
   including linear programmed gas liquid partition chromatography. J.  
   Chromatogr 11: 463-471. 
 
Van Ruth S.   2001.  Methods for gas chromatography-olfactometry: a review.   
   Biomol Eng 17: 121-128. 
 
Vercellotti JR, Crippen KL, Lovegren NV, Sanders TH.  1992.  Defining roasted  
   peanut flavor quality. Part 1. Correlation of GC volatiles with roast color as an  
   estimate of quality. In: Charalambous G, editor.  Developments in Food  
   Science v. 29: Food Science and Human Nutrition.  Amsterdam, The  
   Netherlands: Elsevier Science Publishers. p 183-206. 

background image

 

171

 
Vercellotti JR, Mills OE, Bett KL, Sullen DL.  1992b. Gas chromatographic  
   analyses of lipid oxidation volatiles in foods.  In: St. Angelo AJ, editor. Lipid  
   Oxidation in Food. Washington, DC: American Chemical Society. p 232-265. 
 
Warner KJH, Dimick PS, Ziegler GR, Mumma RO, Hollender R. 1996. 
   ‘Flavor-fade’ and off-flavors in ground roasted peanuts as related to selected    
   pyrazines and aldehydes.  J Food Sci 61(2): 469-472.  
 
Whitaker TB, Dickens JW, Bowen HD.  1974.  Effect of curing on the internal  
   oxygen concentration of peanuts.  Transactions of the ASAE 17(3): 567-569. 
 
Yoshida H, Hirakawa Y, Tomiyama Y, Nagamizu T, Mizushina Y.  2005.  Fatty  
   acid distributions of triacylglycerols and phospholipids in peanut seeds (Arachis  
   hypogaea

 L.) following microwave treatment.  Journal of Food Composition and  

   Analysis 18: 3-14. 
 
Young CT, Hovis AR.  1990. A method for the rapid analysis of headspace  
   volatiles of raw and roasted peanuts. J Food Sci 55(1): 279-280. 

background image

 

172

Table 1- Effect of high temperature microwave blanching on 

sensory attributes 

 

Attribute 

Process 

Control 

Microwave 

Blanched 

Peanuts 

Roast Peanutty 

4.33a

a

 4.28a 

Sweet Aromatic 

2.89a 2.81a 

Dark Roast 

3.02a 3.26b

b

 

Raw Beany 

2.05a 1.90a 

Woody/Hull/Skins

3.09a 3.11a 

Cardboardy/Stale 

0.61a 1.16b 

Sweet Taste 

2.54a 2.49a 

Bitter 

3.27a 3.38b 

Astringency 

1.02a 1.01a 

Ashy 

0.54a 0.82b 

Total Offnote 

1.19a 2.25b 

 

a

Attribute intensities were scored using the 15-point Spectrum

TM

  

 universal intensity scale (Meilgaard et al., 1999) 

                   b

Means followed by different letters are significantly different  

between treatments (p < 0.05) 

 

background image

 

173

Table 2- Model system concentrations in reference peanut paste

 

Model Compound 

Added 

Concentration 

(ppb)

a

 

Reference 

-- -- 

2,6-dimethylpyrazine 16401 

2,6-dimethylpyrazine 17698 

2,6-dimethylpyrazine 18996 

Guaiacol 13.62 

Guaiacol 18.33 

Guaiacol 23.04 

Phenylacetaldehyde 3236 

Phenylacetaldehyde 3915 

Phenylacetaldehyde 4594 

10 

2,6-dimethylpyrazine 16401 

  

Guaiacol 13.62 

  

Phenylacetaldehyde 3236 

11 

2,6-dimethylpyrazine 17698 

  

Guaiacol 18.33 

  

Phenylacetaldehyde 3915 

12 

2,6-dimethylpyrazine 18996 

  

Guaiacol 23.04 

  

Phenylacetaldehyde 4594 

              

             a

Concentrations calculated based on average, average +

σ

, average  

        + 2

σ

 as determined in quantification results 

 

background image

 

174

Table 3 - High impact aroma-active compounds in peanuts as determined by AEDA 

 

 

 

 

 

 

 

 

 

 

 

 

 

RI

b

  

Log

3

 FD Factors

 

No. Compound Fraction 

Odor

DB-5MS DB-WAX 

Control Off-

flavor  

Method of 

Identification 

2-methylbutanal 

NB 

Chocolate/malty 

653 

907 

RI, odor, MS

Toluene 

NB 

Sweet/chemical 

756 

1027 

11 

RI, odor, MS 

3 2,3-butanediol 

NB  Fruity 

803 

1554 

RI, 

odor

Furfural 

AC 

Sweet 

821 

1468 

RI, odor, MS 

(E)-2-hexenal 

AC 

Fruity 

844 

1188 

RI, odor, MS 

Ethyl valerate 

AC 

Fruity 

915 

1116 

RI, odor

2,6-dimethylpyrazine 

NB 

Nutty/earthy 

934 

1314 

RI, odor, MS 

Heptanal 

NB 

Fatty 

937 

1163 

RI, odor, MS 

(E,Z)-2,4-heptadienal 

NB 

Fatty 

968 

1399 

<1 

RI, odor, MS 

10 

2-ethyl-5-methylpyrazine 

AC 

Sweet/ fruity   

981 

1323 

RI, odor, MS 

11 

Methyl hexanoate 

AC 

Sweet 

1015 

1154 

RI, odor, MS 

12 Furaneol

TM 

(2,5-dimethyl-4-

hydroxy-3(2H)-furanone) 

AC 

Burnt sugar 

1047 

2046 

RI, odor, MS 

13 

Phenylacetaldehyde 

NB 

Rosy/green 

1058 

1605 

11 

RI, odor, MS 

14 

Acetophenone 

NB 

Fruity/sweet 

1080 

1638 

RI, odor, MS 

15 

Guaiacol 

NB 

Burnt 

1089 

1825 

RI, odor, MS 

16 2,5-dimethyl-3-

ethylpyrazine 

AC 

Brothy  

1091 

1416 

RI, odor, MS 

17 2-ethyl-3,5-

dimethylpyrazine 

NB 

Nutty/roasted 

1095 

1443 

RI, odor, MS 

18 Maltol 

(3-hydroxyl-2-methyl-

4H-pyran-4-one) 

AC 

Cotton candy 

1106 

1936 

RI, odor, MS 

19 2,3-diethyl-5-

methylpyrazine 

NB 

Roasted 

1153 

1504 

RI, odor, MS 

20 

Nonanal 

NB 

Green/floral 

1159 

1381 

RI, odor, MS 

21 

4-ethylbenzaldehyde 

AC 

Burnt sugar 

1163 

1730 

RI, odor 

22 3-ethylphenol 

NB  Old 

books/musty 

1176 

ND

RI, odor, MS 

23 3,5-diethyl-2-

methylpyrazine 

NB 

Roasted  

1184 

ND 

RI, odor, MS 

24 

Decanal 

NB 

Fried 

1231 

1485 

RI, odor, MS 

25 

(E,E)-2,4-decadienal 

NB 

Fried/oxidized 

1343 

1740 

RI, odor, MS 

26 

Decanoic acid 

NB 

Oxidized 

1357 

ND 

RI, odor, MS 

27 Delta-elemene 

NB  Wood 

1361 

ND 

RI, 

odor 

background image

 

175

28 4-acetoxy-2,5-dimethyl-

3(2H)-furanone 

AC 

Burnt sugar  

1386 

1981 

RI, odor  

29 

Delta-decalactone 

AC 

Sweet/ fruity   

1471 

2209 

RI, odor 

30 

Geranyl butyrate 

NB 

Rosy  

1544 

1888 

RI, odor 

31 

Tetradecanal 

NB 

Honey/hay 

1618 

1931 

RI, odor, MS 

32 

(E)-2-hexenoic acid 

NB 

Fatty 

1632 

1938 

10 

RI, odor 

33 

Pantolactone 

AC 

Burnt sugar 

1689 

1998 

RI, odor, MS 

34 Unknown 

AC  Sweet 

N/A 

352 

Odor 

35 Unknown 

AC  Sweet/malty 

N/A 

707 

Odor 

36 

Benzaldehyde 

AC 

Sweet/malty 

ND 

1500 

RI, odor, MS 

37 

Methyl cinnamate 

AC 

Strawberry 

ND 

2045 

ND 

RI, odor  

38 3-methoxy-2,5-

dimethylpyrazine 

AC Spicy/pepper 

ND 

1385 

RI, 

odor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

Odor description by GC/O 

 

 

 

 

 

 

 

b

Retention indices (RI) were calculated from GC/O data 

c

Flavor dilution factors were determined on a DB-5MS column for neutral and basic compounds, and on a DB-WAX column for acidic 

compounds 

d

Compound identified by RI, MS data and odor character in comparison with the standard 

e

Compound tentatively identified using RI data and odor character in comparison with standard 

f

ND: not detected 

 

 

 

 

 

 

 

background image

 

176

 

Table 4 - Relative abundance of selected high aroma impact compounds in peanuts 

Compound 

RI on  

DB-5MS

Concentration in 

control (ppb)

Concentration in  

off-flavored peanuts  

(ppb) 

Threshold in water 

(ppb) 

Threshold in oil 

(ppb) 

Decanoic acid 

1357 

25.7 ± 18.6 

48.2 ± 61.3 

10000

Not reported 

2-methylbutanal 

653 

2613 ± 856 

4024 ± 789 

1

2.2

Heptanal 

937 

0.41 ± 0.03 

0.14 ± 0.04 

3

250

(E,Z)-2,4-heptadienal 968 

ND

0.29 ± 0.05 

Not reported 

4000

2-ethyl-3,5-dimethylpyrazine 

1095 

5534 ±3117 

6961 ± 495 

0.04

2.2

3-ethylphenol 

1176 

14.9 ±4.5 

16.5 ± 3.1 

0.05

Not reported 

3,5-diethyl-2-methylpyrazine 

1184 

554 ± 410 

572 ± 28 

Not reported 

Not reported 

Tetradecanal 

1618 

3.05 ± 1.98 

0.63 ± 0.18 

Not reported 

Not reported 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

RI on  

DB-Wax

Concentration in 

control (ppb) 

Concentration in  

off-flavored peanuts  

(ppb) 

Threshold in water 

(ppb) 

Threshold in oil 

(ppb) 

Methyl hexanoate 

1142 

486 ± 471 

72 ± 67 

50

Not reported 

(E)-2-hexenal 

1188 

77 ± 48 

15 ± 11 

17

424

2-ethyl-5-methylpyrazine 

1323 

3441 ± 1937 

498 ± 149 

100

h

 Not 

reported 

2,5-dimethyl-3-ethylpyrazine 

1416 

352 ± 163 

1239 ± 806 

0.4

24

Furfural 

1468 

941 ± 514 

536 ± 370 

3000

Not reported 

Benzaldehyde 

1500 

506 ± 250 

328 ± 285 

Not reported 

Not reported 

Maltol (hydroxymethylpyrone) 

1936 

303 ± 92 

71 ± 59  

210

Not reported 

Pantolactone 

1998 

133 ± 44 

126 ± 106 

Not reported 

Not reported 

Furaneol

TM 

2051 

59 ± 52 

17 ± 13 

0.6

25

 

 

 

 

 

 

a

Retention indices (RI) were calculated from mass spectrometry results on a DB-5MS column 

b

Average concentration ± standard deviation 

c

RI calculated from flame ionization results on a DB-WAX column 

d

Orthonasal threshold reported by Rychlik and others (1998) 

e

ND - not detected 

 

 

 

 

 

f

Retronasal threshold reported by Rychlik and others (1998) 

g

Orthonasal threshold  reported by Karagul-Yuceer and others (2004) 

h

Orthonasal threshold reported by Maga (1977)

 

background image

 

177

 

Table 5 - Quantification, sensory orthonasal threshold values, and odor activity values of selected compounds in peanuts 

 

 

 

 

 

 

 

 

 

 

 

Nr. Compounds  RI 

on 

DB-5MS 

column

Concentration 

in control 

(ppb) 

Concentration 

in off-flavored 

peanuts (ppb) 

Threshold 

in water 

(ppb) 

Threshold 

in oil  

(ppb) 

OAV of 
control 

in 

water

OAV of 
control 

in oil 

OAV of 

off-

flavored 
peanuts 

in water 

OAV of 

off-

flavored 
peanuts 

in oil 

Toluene 

756 

104 ± 30 

114 ± 23 

527 ± 4

94660

0.2 0.001  0.2 

0.001 

2,6-dimethylpyrazine 

944 

15234 ± 2594 

40009 ± 2773

718 ± 5

1021 ± 3

21 15  56 

39 

Phenylacetaldehyde 

1058 

4447 ± 1894 

8266 ± 1505

2

154 ± 4

2224 29  4133 

54 

Acetophenone 

1080 

3.60 ± 0.16 

3.2 ± 3.2 

245 ± 6

5629 ± 6

0.015 0.001  0.01 

0.0006 

Guaiacol 

1089 

13.7 ± 0.6 

29 ± 5

2.5

16

5.5 0.9  12  1.81 

6 2,3-diethyl-5-

methylpyrazine 

1148 

2.2 ± 0.5 

1.6 ± 0.3 

0.09

0.5

24 4  18  3.2 

Nonanal 

1159 

121 ± 79 

168 ± 42 

1

1000

121 0.1  168  0.17 

Decanal 

1231 

3.7 ± 0.7 

5.9 ± 0.5 

0.1

6700

37 0.001  59 

0.001 

(E,E)-2,4-decadienal 

1343 

135 ± 85 

28.9 ± 4.5 

0.07

180

1929 0.8  413 

0.16 

 

 

 

 

 

 

 

 

 

 

 

a

Retention indices calculated from mass spectrometry results on a DB-5MS column 

b

The odor activity value (OAV) is the ratio of the concentration to the threshold value of the compound 

 

 

 

 

c

Orthonasal threshold experimentally determined from 35 panelists 

d

Orthonasal threshold reported by Carunchia Whetstine and others (2005) 

e

Orthonasal threshold reported by Rychlik and others (1998) 

f

Concentration is significantly different from the control at p < 0.05 

g

Concentration is significantly different from the control at p < 0.1 

 

 

 

background image

 

178

 

 

 

 

 

 

 

CHAPTER 6: 

CONCLUSIONS AND FUTURE WORK

background image

 

179

Conclusions  

 

This research investigated the impact of different microwave blanching 

parameters on the properties of roasted peanuts, and characterized the changes in 

flavor which occur in peanuts during microwave blanching at high temperatures.  

The microwave processing parameters best suited for blanching peanuts were first 

identified.  Processing treatments were differentiated by energy absorbed during 

processing, average and maximum internal temperatures, loss in moisture content, 

and blanchability. The best blanchability resulted from higher process temperatures 

and greater loss in moisture content.  Treatments exceeding 110 °C resulting in a 

final moisture content of 5.5 % or less yielded blanchability values greater than the 

85 % industry standard.   

The effect of this alternative blanching technique on flavor was evaluated 

using descriptive sensory analysis.  A sensory panel determined that peanuts 

reaching the highest internal temperatures (~ 128 °C) and resulting in the lowest 

moisture content (4.5%) during blanching had the most total offnote flavor.  

However, temperatures as high as 113 °C did not produce significant off-flavor.  The 

microwave-associated off-flavor was related to stale/floral and burnt/ashy flavors, 

and was related inversely to positive flavor attributes such as roasted peanutty, 

sweet aromatic, and sweet taste.   

Analysis of the peanut flavor volatiles using GC/O, GC/MS, and threshold 

testing revealed an increased formation of guaiacol, phenylacetaldehyde, and 2,6-

dimethylpyrazine in the off-flavored peanuts compared to that in a process control.  

Model system work confirmed that increased concentrations of these compounds 

background image

 

180

caused the increased intensity of burnt and stale/floral characteristics noted by the 

descriptive sensory panel.  These compounds were only a small fraction of over 200 

aroma-active compounds which were found to contribute to roasted peanut flavor 

using GC/O.  Increased and unfavorable levels of these compounds may have been 

formed through Maillard reactions and thermal degradation during the high 

temperatures reached in microwave blanching. This research also confirmed the 

importance of Maillard reaction and lipid oxidation compounds in the peanut flavor 

profile.  However, as the results show, even increased concentrations of compounds 

which are commonly found in good quality peanuts can lead to an imbalance in the 

flavor profile and cause the perception of an off-flavor. 

This research has helped improve the peanut lexicon, and has further 

characterized the extraction techniques best suited for the volatile analysis of 

peanuts.  The analysis of an off-flavor that was difficult to define was made possible 

through the introduction of the total offnote term to the peanut lexicon, which was 

used successfully to differentiate the effects of microwave treatments.  Further 

additions were made to the lexicon, such as the attribute “ashy”, which was 

referenced by the aroma of cigarette ash.  In instrumental analysis, solvent 

extraction and SAFE were deemed more suitable than static headspace methods for 

analysis of aroma-active peanut compounds generated during the high temperatures 

in microwave blanching, indicating that compounds of higher molecular weight and 

moderate volatility had the highest impact on flavor. 

This research is important because it illustrates the importance of the relative 

concentrations of the many aroma-active compounds found in peanuts.  Although 

background image

 

181

microwave technology may provide many advantages during blanching, its effects 

on the formation of flavor compounds must be considered.  This research could aid 

in training sensory panels to evaluate processing-related off-flavors, because 

guaiacol and phenylacetaldehyde could be used as chemical standards to define the 

burnt/ashy and stale/floral off-flavors which can occur during high temperature 

processing.  Through this project, it was determined that it is possible to achieve 

acceptable blanchability in peanuts using microwave blanching while minimizing the 

possibility of an off-flavor.    

 

 
 

background image

 

182

Future Work 

 

In future work, analysis of peanut flavor compounds before roasting may 

further illuminate the chemical changes caused by microwave blanching.  During 

roasting, many flavors originating from the raw product might be obscured, as was 

seen in green coffee beans (Yeretzian and others 2002).  In addition, more chemical 

anchors (standards) could be assigned to the attributes in the peanut lexicon.  Just 

as certain fruity esters and short chain organic acids have been associated with the 

fruity/fermented off-flavor (Didzbalis and others 2004), and guaiacol can be used to 

demonstrate the attribute of ashy, other chemical standards could be established.  

This would help in the training of panelists and could provide a basis to further 

instrumentally classify differences between peanut varieties as well as peanuts from 

different geographical locations, which have been shown to vary in flavor (Sanders 

and others 1992).  This research demonstrated that we do not fully understand the 

importance of the relative concentrations of aroma compounds needed to achieve 

good quality peanut flavor.  To aid this understanding, omission experiments (in 

which one or more compounds are omitted from an aroma model) could be 

conducted to pinpoint those compounds key to peanut flavor, as for example has 

been done in coffee (Grosch 2001; Czerny and others 1999). 

Peanuts are not only valuable for their flavor attributes, but also for their 

nutritional benefits, some of which may not be known to the average consumer.  

Peanuts are a good source of mono- and polyunsaturated fats (Hoffpauir 1953), 

which have been connected to better heart health in nutritional literature (Kris-

Etherton and others 2001), and phytosterols such as beta-sitosterol, which may 

background image

 

183

protect against colon, prostate, and breast cancers (Awad and others 2000).  Also, 

like red wine and grapes, peanuts are a good source of resveratrol, which has been 

associated with reduced cardiovascular disease and anticarcinogenic properties 

(Sanders and others 2000).  Furthermore, peanuts contain significant amounts of B 

vitamins and tocopherol (Hoffpauir 1953), which play important roles in heart and 

nervous system health.  Although these nutritional benefits will make peanuts more 

marketable to consumers, some of these components are also heat and process-

sensitive.  Polyunsaturated fats are several times more prone to oxidation (Min and 

others 1989), and vitamins are well known to degrade at high processing 

temperatures (Lund 1982).  The effect of microwave blanching and microwave 

roasting on components such as vitamins, polyunsaturated fatty acids, resveratrol, 

and beta-sitosterol could be assessed.  If significant losses of these compounds 

could be prevented using microwave blanching or microwave roasting, it would 

further increase the value of this product.     

 

background image

 

184

References 

 

Awad AB, Chan KC, Downie AC, Fink CS.  2000.  Peanuts as a source of beta- 
   sitosterol, a sterol with anticancer properties.  Nutrition and Cancer 36(2):238- 
   241. 
 
Czerny M, Mayer F, Grosch W.  1999.  Sensory study on the character impact  
   odorants of roasted Arabica coffee.  J Agric Food Chem 47:695-699. 
 
Didzbalis J, Ritter KA, Trail AC, Pflog FJ.  2004.  Identification of fruity/fermented  
   odorants in high temperature cured roasted peanuts. J Agric Food Chem 52:  
   4828-4833. 
 
Grosch W.  2001.  Evaluation of the key odorants of foods by dilution  
   experiments, aroma models, and omission.  Chemical Senses 26(5): 533-545. 
 
Hoffpauir CL.  1953.  Peanut composition: relation to processing and utilization.   
   Agricultural and Food Chemistry 1:668-671. 
 
Kris-Etherton PM, Zhao G, Binkoski AE, Coval SM, Etherton TD.  2001.  The  
   effects of nuts on coronary heart disease risk.  Nutrition Reviews 59(4):103- 
   111. 
 
Lund DB.  1982.  Influence of processing on nutrients in foods.  Journal of Food  
   Protection 45(4):367-373. 
 
Min DB, Lee, SH, Lee EC.  1989.  Singlet oxygen oxidation of vegetable oils.  In:  
   Min DB, Smouse TH, editors.  Flavor chemistry of lipid foods.  Champaign, IL:  
   American Oil Chemists' Society. p 57-97. 
 
Sanders TH, McMichael RW Jr, Hendrix KW.  2000.  Occurrence of resveratrol in  
   edible peanuts.  J Agric Food Chem 48:1243-1246. 
 
Sanders TH, Vercellotti JR, Crippen KL, Hinsch RT, Rasmussen GK, Edwards  
   JH.  1992.  Quality factors in exported peanuts from Argentina, China, and the  
   United States.  JAOCS 69(10): 1032-1035. 
 
Yeretzian C, Jordan A, Badoud R, Lindinger W.  2002.  From the green bean to  
   the cup of coffee: investigating coffee roasting by on-line monitoring of  
   volatiles.  European Food Research Technology 214:92-104. 

background image

 

185

 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES

background image

 

186

Appendix 1:   

Analysis of Peanut Volatiles by Solvent Extraction, SAFE, GC-O, and GC-MS  

 

Standard Operating Procedure 

 

Extraction 

(1 day) 

1.  Make saturated salt solution: 50g NaCl to 300mL dI water.  Add salt until some 

precipitates out. 

2.  Weigh out sample:  2x50g for rep 1, 2x50g for rep 2.  Weigh directly into plastic 

extraction bottles.   

3.  Make up internal standard with concentration of 50

μL 2-methyl-3-heptanone, 

50

μL 2-methyl valeric in 5 mL methanol.  In sample, use 15μL istd per bottle 

x2bottles ( = 30

μL per rep). 

4.  Add 50 mL of NaCl solution to each bottle. 

5.  Add 50 mL ethyl ether anhydrous per bottle (HPLC or spectral grade). 

6.  Make sure cap is tight, place on shaker and shake for 30 minutes at speed 8. 

7.  Centrifuge bottles - make sure centrifuge is balanced.  Angular velocity = 3x1000. 

Be sure to screw on both lids of the centrifuge.  Set timer for 15 minutes and 

start.   

8.  Pull off top layer of ether and put in mason jar.  Put jar in freezer between 

shaking/centrifuging.  Use 1 jar per replicate = 2 jars total. 

9.  Repeat three times, only adding ether for subsequent repetitions.  This will result 

in 300mL per rep (50mL x 2 bottles/rep x 3 extractions). 

 

background image

 

187

SAFE

 (3 SAFE's can be done in 1 day) 

(If the sample was in the freezer overnight, allow it to warm up early at RT) 

1.  Make sure blue ball valve on vacuum system is closed (nearest to pump). 

2.  Turn on the rough pump to achieve 10

-2

 Torr (turn on gauge), and plug in the fan. 

3.  Fill waterbath with 40-50°C water and plug in so it can warm up. 

4.  Assemble the SAFE apparatus:   

¾

  Put Teflon threaded pieces and associated o-ring on any glass part without 

threads. Also, a sample stopper and stopcock are needed. 

¾

  There are 4 parts to the SAFE: a round bottom flask, elbow, trap, and the 

main unit. 

¾

  Connect elbow and trap, and clamp into place. 

¾

  Attach this to the second trap (leave in dewar). Put traps as deep as possible 

into dewars. 

¾

  Make sure configuration is completely horizontal, and then loosely attach 

SAFE apparatus to ring stand.  Fit nose of SAFE into neck of trap. 

5.  Open blue valve slowly to 1/2 way, and wait to stabilize.  Then connect SAFE – if 

it’s not going in easily, change angle of the SAFE apparatus.  Use the vacuum to 

pull the SAFE into place.  Avoid applying torque while attaching SAFE to trap - 

screw in and back off as necessary. Tighten as much as you can by hand (use 

gloves). 

6.  Wait until pressures stabilize to 10

-2

 Torr, then turn on the small diffusion pump 

(small metal switch). 

background image

 

188

7.  If target pressures are not reached in 15 minutes, check for leaks.  When open 

fully, should get to 10

-3

 and 10

-4

 before proceeding. 

8.  Fill up dewars with liquid nitrogen. 

9.  Attach 2 sets of heating tape - tie to sample chamber, wrap to right of stopcock 

and over neck of first trap, and use the second tape to cover the neck of the 

round bottom flask.  Leave access to all threads. 

10. Attach water hoses – allow for a slow stream on exit to the sink. 

11.  Plug in heating tape and turn on. 

12.  Make sure all fittings tight, and make sure stopcock is closed. 

13. Add sample to top chamber, then slowly open stopcock to let drops of extract into 

round bottom flask. 

14. After all of the extract is introduced, pour ether in as wash (~30mL).  Rinse both 

the glassware used, and inside of chamber. 

15. Let SAFE distillation run approximately 2 hours.  It is done when you can no 

longer see boiling in round bottom flask.  

16. Refill liquid nitrogen in dewars and cover (aluminum foil); make sure nitrogen 

levels are full during entire run and periodically check waterbath temperature. 

17. NOTE:  Make sure the sample does not freeze during the SAFE procedure – 

apply heating tape far down the neck of the round bottom flask, and make sure 

water levels in the bath are sufficiently high enough. 

 

When SAFE is completed: 

1. Close blue valve. 

background image

 

189

2.  Turn off waterbath. 

3.  Turn off circulating water and heating tape.   

4.  Turn off fine pump, then rough pump.  Allow 20 minutes to cool. 

5.  Release vacuum (loosen stopcock).  Detach SAFE from trap. 

6.  After fan cools off, unplug it. 

7.  Put frozen trap into dewar with room temperature water in the hood, and allow to 

defrost. 

8.  Transfer sample into small jar, and wash elbow with ether for remaining sample. 

9.  Label this with 1) date 2) experimenter’s name and 3) extraction step using 

colored lab tape and sharpie.   

10. Clean SAFE with hot soapy water and in base bath, then bake dry in oven. 

11. Put extract under nitrogen to evaporate to 20 mL.  This will take about 30 

minutes – do not allow to go to dryness!  It is easier to transfer extract to test 

tube for evaporation of last few milliliters.   

 

Phase Separation 

(1 day) 

1.  Wash concentrate with 3mL of 0.5M Na

2

CO

3

.  Shake for 10s, and take off water 

layer (water is on bottom, use long pipette). 

2.  Repeat for 2 washes total. 

3.  Wash with 2mL saturated NaCl, and take off water layer. 

4.  Repeat this twice for 3 washes total. 

5.  The ether phase at this point is the Neutral Basic fraction.  Label this as “Stock 

NB1”. 

background image

 

190

Aqueous Phase  

1.  Use fresh pipettes for the next segment. 

2.  Lower pH to 2.0 with 18% HCl w/v.  Initial pH is ~11, and this usually requires 2 

pipettes’ full of acid. 

3.  Re-extract with 5 mL ether.  Take off ether layer (top), and leave ~1mm above 

meniscus.  If water gets into sample, freeze overnight and separate. 

4.  Repeat for 3 washes total. 

5.  This ether layer is the Acid fraction.  

 

Filtering with Sodium Sulfate 

Make sodium sulfate columns 

1.  Fill MonStr pipettes partway with glass wool, pack wool towards bottom.   

2.  Fill pipette halfway with sodium sulfate (anhydrous, reagent grade) which has 

been baked in the oven (deodorized). 

 

Filtration 

1.  Tape 2 sodium sulfate columns together, and shake columns to loosen powder.   

2.  Filter samples through columns into a new, smaller test tube.  Don’t let columns 

go dry.  

3.  Dry down sample to less than 2mL under nitrogen. 

4.  Label GC vials for the fractions:  each fraction (NB, Acid) has 2 GC vials (one 

with insert, one without).  For one sample that includes 2 replicates, you will have 

8 vials total. 

background image

 

191

5.  Filter through a third sodium sulfate column into a GC vial without insert. 

6.  Dry to 0.5 mL under nitrogen.   

7. Transfer 200 

μL to second GC vial with insert, and save remaining 300 μL in 

freezer. 

8.  Blow down sample in insert to 50 

μL immediately before starting GC analysis. 

 

GC-O Analysis 

1.  Use HP 5890 with FID and sniffing port.   

2.  Both the neutral/basic and acidic fractions are analyzed from every extraction.  

3. Two 

μL are injected using the sandwich technique into a polar capillary column 

(DB-WAX) and into a nonpolar column (DB-5). For injection, 2 µL ether, 1 µL air, 

and then 2 µL of sample are drawn into a 10 µL injection syringe. 

4.  Three experienced panelists will sniff the neutral/basic and acidic fractions of 

peanut paste extracts on two different columns.  The samples will be described 

and scored using a 5-point scale.    

 

GC-MS Analysis 

1.  Use 6890N GC / 5973 MSD and DB-5MS column. 

2.  Each extract (1 

μL) is injected in the splitless mode.   

3.  Duplicate analyses are performed on each sample.   

 

background image

 

192

Appendix 2:  Quantification of Peanut Volatiles 

First, identify the target compounds in the project by GC/MS and GC/FID 

based on the retention index, odor property, and mass spectra as compared to 

standards.  Calculate relative abundance for a general idea of the compound 

concentration, and then quantify to find absolute abundance. 

To quantify compounds, follow the procedure in Appendix 1, with the following 

exceptions: 

1.  Before beginning, calculate the stock solutions of the compound standards.  

Make the highest concentration first, and dilute accordingly to make 5 levels 

of standards.  Convert all concentrations to a weight per volume basis, using 

the compound density.  Be sure not to add more than 500 

μL or less than  

μL of the standard to any sample. 

2.  Make a table to carefully detail the amount of standard added to each 

concentration level.  Don’t forget the internal standard. 

3.  Make the stock solutions in methanol, and add these to 100 mL of deodorized 

deionized water at the calculated concentrations.  All standards can be 

extracted at once, unless there are co-eluting peaks. 

4.  Add 50 mL of ether to each sample, and continue with the procedure in 

Appendix 1 from this point on.    

5.  For GC/MS analysis, inject each of the 5 levels of standard at least 3 times.  

Inject each NB fraction on the GC/MS and each acid fraction on the DB-WAX.  

Consider using a dedicated syringe for these standards to avoid 

background image

 

193

contamination, and run a blank on the GC/MS to be certain that the syringe is 

clean. 

6.  Record the ratio of the peak area of each compound to the peak area of the 

internal standard, and construct a standard curve.  This standard curve must 

be linear, and should have an R

2

 greater than 0.85.  Place the concentration 

ratio on the x axis (concentration of the compound / concentration of internal 

standard).  Place the area ratio on the y axis (peak area of the compound / 

peak area of the internal standard).  The response factor is calculated as the 

inverse of the slope of this line. 

7.  To calculate the absolute abundance of the compound: 

Conc. of cmpd = response factor * (area of cmpd/area of istd) * (conc. cmpd / conc. of istd) 

 

background image

 

194

Appendix 3:  Summary of Aroma-Active Compounds Found in  

Peanut Samples Using Aroma Extract Dilution Analysis (AEDA) 

 
 

Table 1:  Aroma Active Compounds in Reference Peanuts Detected by 

Gas Chromatography-Olfactometry 

 

 

 

 RI

Fraction

Odor

DB-5 DB-

WAX 

Intensity

AC sweet

 352 

1.5 

AC burnt 

  628 

1.5 

NB chocolate/malty 

653   

2.5 

AC fruity 

667   

1.5 

NB sweet/malty 

  678 

2.0 

AC vinegar 

691   

1.8 

NB garlic/onion 

700   

1.5 

NB malty 

702   

1.5 

AC sweet/malty 

  707 

1.7 

NB fatty 

710   

1.5 

AC lemony 

  714 

2.0 

NB nutty/malty 

747   

1.5 

AC plastic/chemical 

752   

1.5 

NB sweet/acrid/chemical 

760   

2.0 

AC chocolate/sweet 

763   

1.8 

AC onion 

  772 

1.5 

AC malty 

  783 

2.0 

NB sweet/chocolate/malty   809 

3.5 

NB malty/fruity 

810   

1.5 

NB corn 

chip/smoky 

814   

1.5 

AC sweet 

821   

1.0 

AC chemical/rubber 

833   

2.0 

AC fruity 

840   

1.5 

NB onion/brothy 

860   

1.4 

NB sweet/fruity 

886   

2.0 

NB grape 

  886 

2.0 

AC malty/chocolate 

  898 

2.5 

NB burnt 

sugar 

906   

2.0 

NB chocolate 

  907 

2.5 

NB sweaty 

910   

3.5 

AC dried 

apricots/cheesy 929   

3.5 

NB peanutty/earthy 

 

930   

3.8 

NB corn 

chip/fatty 

931   

4.0 

NB onion 

  947 

2.2 

NB potato/brothy 

965   

3.3 

NB sweet 

  972 

1.5 

background image

 

195

AC nutty/burnt 

  975 

1.5 

NB cabbage/garbage 

977   

3.3 

NB fried 

977   

3.0 

AC sweet 

980   

1.5 

NB metallic/mushroom  986   

2.5 

NB potato 

992   

1.5 

NB roasted/nut 

998   

2.5 

AC sweaty 

999   

2.0 

AC burnt/cabbage 

1001   

1.5 

NB fruity/sweet 

  1003 

2.3 

NB popcorn/musty 

1004   

4.5 

NB fruity/citrus 

1006   

3.0 

AC bubble 

gum 

1008   

2.0 

AC sour/burnt 

1010   

2.0 

NB peanutty 

1021   

2.0 

NB nutty/corn 

chip 

  1023 

2.0 

NB green/spicy 

  1025 

1.8 

NB fruity/chemical 

 

1026   

3.2 

NB green 

 

  1031 

2.0 

AC sweaty/musty 

1036   

2.0 

NB brothy/nutty 

1037   

3.0 

AC fruity/burnt 

sugar 

1043   

2.0 

NB plastic 

bottle 

  1047 

2.0 

NB skunk 

  1052 

2.7 

AC nutty/roasted 

  1054 

1.5 

NB burnt/burnt 

sugar 

1058   

5.1 

NB rosy 

1060   

2.8 

NB dirty/floral/fatty 

1068   

3.0 

AC chemical 

  1071 

2.0 

NB sweet/nutty 

  1081 

1.5 

NB dirty 

  1082 

1.5 

NB fruity/sweet 

1087 

1.5 

AC sweet 

  1090 

1.5 

NB burnt 

1091   

3.8 

NB chemical/fruity 

1092   

3.0 

NB nutty 

1093   

2.8 

NB popcorn 

  1093 

1.5 

NB burnt/brothy 

1100   

4.0 

AC chemical/ammonia 

  1105 

2.0 

AC green 

peanuts 

1106   

3.0 

NB fruity 

1107   

3.0 

NB dusty/rubber 

1111   

2.5 

AC sugary/ 

stale 

1112   

3.5 

NB citrus 

  1113 

1.8 

NB animal/brothy 

1113   

3.0 

AC fruity 

  1116 

2.5 

background image

 

196

NB roasted/nutty 

 

1130   

2.4 

AC burnt/dusty/sweet 

  1130 

2.0 

NB bubble 

gum/fruity 

1136   

2.8 

NB popcorn 

  1137 

1.5 

AC burnt, 

sweet 

1143   

2.0 

NB rubber/sulfur 

1144   

2.0 

NB nutty 

1148   

3.0 

NB pine/spicy 

  1158 

2.0 

NB green/floral 

1159   

3.0 

AC nutty/chemical 

1159   

2.8 

AC sweet/fruity 

  1163 

1.5 

NB burnt/roasted 

nuts 1165   

4.0 

AC chemical/sweet 

  1166 

2.5 

AC maple 

syrup 

1169   

3.7 

NB old 

books 

1176   

3.5 

NB burnt 

sugar 

  1183 

2.0 

NB fried/popcorn 

  1183 

1.5 

NB roasted 

1185   

2.8 

NB dusty/foul/green 

  1187 

4.0 

NB sweet/chemical 

1192   

3.3 

AC 

burnt sugar  

1196 

 

2.3 

AC sweet/fruity 

  1198 

1.5 

NB 

spicy   

 

1205 

2.0 

NB roasted/burnt 

1208   

2.0 

NB garlic 

  1211 

2.0 

AC sweet/fruity 

1212   

2.5 

NB nutty/green/plastic 

  1215 

3.5 

NB pungent/frier 

oil 

1216   

3.2 

NB rosy/floral 

1218   

2.8 

AC musty/urine 

1222   

3.6 

NB cheesy 

  1226 

2.0 

NB fried 

1231   

2.2 

NB fruity 

  1233 

2.7 

NB spicy/green 

  1237 

3.0 

AC floral/spicy/sweaty  1241   

3.0 

NB metallic/mushroom 

  1248 

4.0 

NB potato/green 

  1249 

4.0 

AC spicy/garlic 

  1251 

2.5 

AC burnt 

sugar 

1254   

2.3 

NB cuke/floral 

1255   

1.8 

NB burnt/roasted 

nuts 

  1260 

3.0 

AC chemical 

  1262 

2.0 

NB roasted/sweet 

1265   

1.5 

NB oxidized/nutty 

  1267 

2.3 

NB popcorn 

  1277 

4.5 

NB sweet 

  1282 

1.5 

background image

 

197

AC oxidized 

1289   

1.5 

NB dusty/nutty/popcorn 

  1290 

3.5 

NB burnt/nutty 

1291   

2.5 

NB catty 

  1299 

3.5 

AC popcorn 

  1300 

3.5 

NB fruity 

1304   

3.5 

NB nutty/roasted/earthy    1308 

2.0 

AC sweaty/cheesy 

1310   

2.0 

NB fatty/stale 

1313   

3.5 

NB dusty/catty/chemical    1317 

5.0 

AC sweaty 

  1318 

2.0 

NB floral 

1319   

2.8 

NB cabbage 

  1322 

3.7 

AC bubble 

gum/fruity 

  1323 

2.3 

NB burnt 

1328   

2.0 

NB fruity 

  1328 

3.0 

NB solvent 

  1335 

3.0 

NB 

burnt/roasted   

 

1336 

3.5 

NB parmesan 

cheese 

  1339 

4.0 

NB fried/oxidized 

1343   

4.0 

NB glue/solvent 

  1343 

3.0 

NB sweet/green/peanuts    1345 

3.5 

NB 

fake peanut butter 

 

1346 

2.5 

NB coconut 

  1349 

2.0 

NB bready 

  1351 

3.0 

AC fruity 

  1354 

3.0 

NB fatty/licorice/oxidized

1355   

2.7 

AC catty 

  1358 

1.5 

NB wood/campfire 

1361   

3.5 

NB popcorn/corn 

chip 

  1364 

3.5 

AC vinegar/cabbage 

  1365 

3.5 

NB floral/musty 

1368   

3.5 

NB spicy/skunk 

  1368 

3.0 

NB nutty 

  1377 

5.0 

NB green/geranium 

  1381 

4.0 

NB burnt/smoke 

  1381 

4.0 

AC sugary 

 

1386   

2.5 

NB stale/fatty 

  1389 

4.0 

AC spicy 

  1395 

4.0 

NB potato 

  1398 

3.7 

NB chemical/nutty 

  1401 

5.5 

AC burnt/chocolate 

  1401 

3.3 

NB hay/sweet/licorice  1405   

3.3 

NB parmesan/nutty 

  1411 

3.0 

NB chemical/marker 

  1414 

3.8 

AC brothy 

  1416 

3.5 

background image

 

198

NB burnt 

potatoes 

  1428 

4.0 

NB grainy/metallic 

1436   

2.5 

AC chocolate/dark 

roast    1437 

2.8 

AC burnt/bell 

pepper 

  1440 

2.8 

NB fried/nutty 

1442   

2.5 

NB oxidized 

 

  1454 

3.5 

AC glue/sweet 

1456   

2.0 

AC citrus 

 

1458   

2.5 

AC sweet 

  1468 

2.0 

NB nutty 

  1469 

3.5 

AC burnt 

sugar 

1470   

2.0 

NB brothy 

1473   

1.5 

AC 

sweet and mossy 

 

1477 

2.0 

NB bell 

pepper/oxidized    1481 

3.5 

NB carpet 

1483   

2.0 

AC sour/vinegar 

  1484 

2.0 

AC rosy 

1485   

2.0 

AC fatty 

  1487 

1.5 

NB metallic 

  1489 

3.0 

AC sweaty 

  1494 

2.0 

AC sweet/vanilla/floral  1498   

2.8 

AC burnt 

  1498 

1.5 

AC sweet/malty 

  1500 

2.0 

NB nutty/chemical 

  1503 

3.4 

NB nutty 

1504   

2.5 

NB hay/fatty 

1509   

2.8 

AC plastic/chemical 

  1527 

2.0 

AC malty/sweaty 

  1528 

2.0 

NB solvent/nutty 

  1535 

3.0 

AC vinegar/vegetable 

  1540 

2.0 

AC rosy 

1547   

2.5 

AC cheesy/sweet 

 

  1549 

4.0 

NB peanut 

butter 

  1553 

3.3 

NB nutty/roasted 

1556   

1.5 

NB burnt/sour 

  1565 

3.0 

AC sour/stinky 

1567   

2.0 

NB rosy 

1553   

2.1 

NB rosy 

  1572 

5.6 

AC cheese 

popcorn 

  1572 

3.5 

NB floral/nutty 

  1577 

4.0 

AC vanilla 

 

1582   

2.0 

AC sweaty/malty 

  1592 

4.3 

AC rosy 

1594   

1.8 

AC rosy 

  1606 

5.0 

AC cheesy/sweaty 

  1606 

3.0 

NB roasted/sweet 

1609   

3.0 

background image

 

199

NB brothy 

 

  1612 

3.5 

NB honey/hay 

1618   

2.0 

NB 

woody/smoky   

1625 

 

1.5 

NB fatty 

1632   

2.0 

NB floral 

 

  1633 

2.5 

NB fruity/Juicy 

Fruit 

  1638 

2.0 

AC brothy/sweaty 

  1645 

5.0 

NB stale/cucumber 

  1651 

4.0 

NB brothy 

1654   

2.0 

NB woody/smoky/sweet 1658   

2.0 

AC orange/citrus 

1666   

2.5 

NB nutty/burnt 

  1677 

3.0 

AC sweet/solvent 

1680   

1.8 

AC sweaty/swiss 

cheese    1680 

4.0 

NB fatty 

 

  1693 

2.3 

NB popcorn 

  1697 

1.5 

NB brine/broth/roasted 1710  

1.0 

AC chemical/sulfur 

 

1728   

1.8 

AC dirty/sweaty 

animal 

  1734 

4.5 

AC burnt 

sugar 

  1735 

2.8 

NB garlic 

  1750 

1.5 

NB oxidized 

  1759 

3.5 

AC solvent/spicy/floral  1760   

1.5 

AC burnt 

sugar 

1763   

1.5 

NB rosy 

1763   

2.5 

NB grainy 

1770   

2.0 

AC minty/tobacco/hay 

  1784 

3.3 

NB meaty/smoky 

  1787 

3.5 

NB oxidized 

  1793 

3.5 

AC burnt 

sugar 

  1801 

2.0 

AC floral/pungent 

1813   

2.0 

AC sugary 

1825   

2.0 

NB sweet/spicy/stale 

  1827 

3.0 

NB peanut 

butter 

  1855 

2.0 

NB brothy/oxidized 

  1886 

2.8 

AC hay 

 

  1888 

1.5 

AC sweet/strawberry 

1895   

2.0 

NB nutty 

1903   

1.5 

AC 

burnt sugar/ cotton 
candy 

 1913 

2.5 

AC menthol 

  1933 

2.0 

AC burnt 

sugar 

1937   

2.0 

AC toast 

 

  1939 

3.0 

NB oniony/nutty 

  1945 

2.5 

AC burnt 

toast/burnt 

sugar 

 1987 

3.0 

background image

 

200

AC burnt 

sugar 

  1988 

3.3 

NB peanut 

butter 

  1992 

2.5 

AC toasted 

marshmallow    2008 

3.0 

AC smoky 

2016   

2.5 

NB brothy/meaty 

  2017 

3.0 

NB sweet/papery 

  2023 

2.3 

NB solvent/spicy 

  2025 

2.0 

NB metallic/papery 

  2049 

2.5 

AC burnt 

sugar 

  2051 

3.0 

AC fake 

strawberry 

  2059 

3.5 

AC burnt/sulfur 

  2061 

2.0 

NB meaty/nutty 

  2070 

2.5 

NB sweaty/nutty 

  2085 

1.8 

AC sweet/hay 

2089   

1.5 

NB oxidized 

  2091 

1.5 

NB toast 

  2099 

3.0 

NB fruity 

  2109 

1.5 

AC sweet/strawberry 

  2120 

2.5 

NB sweet/grainy 

  2128 

2.0 

AC maple/cotton 

candy 

  2158 

2.0 

NB spicy/cinnamon/pumpkin 

spice 

2163 

2.5 

NB burnt/nutty 

  2180 

2.0 

AC burnt 

sugar/strawberry 

 2198 

2.3 

NB grainy/sweet 

  2223 

2.0 

AC tealeaves/smoky 

  2239 

2.5 

NB sweet/spicy 

  2262 

2.0 

AC brothy/meaty/smoked    2330 

3.0 

 

 

a

Fraction in which odor was detected, AC = acid, NB = neutral/basic 

b

Odor description by GC/O 

c

Retention indices (RI) calculated from GC/O data 

d

Odor intensity for each compound averaged from panelist data  

e

Compounds in bold were determined to have high impact on flavor  

     through subsequent AEDA analysis (Schirack et al., 2006).   
     AEDA was conducted on the DB-5 column for NB compounds,  
     and on the DB-WAX column for AC compounds. 

 
 

background image

 

201

 

Table 2:  Aroma-Active Compounds in Microwave-Blanched 

Peanuts Detected by Gas Chromatography-Olfactometry 

   

 

 

 

RI

 

Fraction

Odor

DB-5 DB-WAX Intensity

NB sweet

 355  1.5 

NB fruity 

556 

 

1.5 

NB painty 

594 

 

1.5 

NB chocolate/malty 

636 

 

2.7 

AC vinegar 

666 

 

3.5 

NB onion 

678 

 

2.0 

NB chocolate 

 

693 

2.0 

AC sweet 

 

699 

1.5 

NB sweet/malty 

702 

 

2.5 

AC rubber 

739 

 

1.5 

NB sweet 

743 

 

1.5 

NB burnt/roasted 

747 

 

2.0 

NB plastic/sweet 

780 

 

2.0 

NB fruity 

803 

 

2.0 

AC sweet/fruity 

807 

 

1.5 

NB malty/chocolate 

 

807 

2.0 

AC grassy/hay 

809 

 

1.5 

AC sweaty 

815 

 

2.0 

NB ammonia 

820 

 

2.0 

NB sweaty 

 

822 

2.5 

NB onion 

823 

 

1.8 

NB malty/chocolate 

 

839 

3.2 

AC burnt 

sugar/fruity 

844 

 

1.5 

AC grainy 

 

851 

1.5 

AC green 

853 

 

1.5 

AC popcorn 

858 

 

1.5 

AC butyric/cheesy 

868 

 

2.5 

NB beany 

 

876 

1.5 

NB garlic 

882 

 

2.5 

NB roasted/potato/bread  890 

 

1.8 

AC buttery 

906 

 

3.0 

NB caramel/malty 

 

908 

2.5 

AC sweaty 

909 

 

3.6 

NB fishy/oxidized 

909 

 

2.5 

NB plastic 

 

910 

2.5 

NB buttery 

 

912 

3.0 

AC dried 

apricots/fruity 

922 

 

3.8 

background image

 

202

NB fatty/potato 

930 

 

3.3 

AC nutty/sweet/roasted 

 

937 

1.5 

NB potato/fatty 

937 

 

3.3 

NB onion 

 

939 

2.5 

AC barnyard 

940 

 

3.5 

AC malty 

 

943 

2.0 

NB nutty/earthy 

944 

 

4.3 

AC bo/sweaty 

965 

 

3.0 

NB buttery 

potato/fatty  968 

 

2.0 

NB cheesy 

 

969 

2.0 

NB spicy 

 

970 

2.0 

NB plastic 

bottle 

975 

 

2.0 

AC citrus 

 

979 

1.8 

AC sweet/fruity 

981 

 

2.0 

NB baked 

potato 

988 

 

2.0 

NB onion 

989 

 

2.5 

NB onion 

 

 

992 

3.0 

NB burnt 

994 

 

2.0 

NB sweet/fruity 

 

995 

1.5 

NB corn 

chip 

1002 

 

3.5 

NB toffee 

 

1002 

2.0 

NB metallic/mushroom 

1002 

 

3.5 

NB fruity/citrus 

1010 

 

2.4 

NB peanut 

candy 

1011 

 

3.0 

NB solvent 

1012 

 

2.5 

NB old 

books 

 

1012 

1.5 

AC sweet 

1015 

 

1.5 

NB malty/buttery 

 

1024 

2.5 

NB sweet/chemical 

 

1027 

2.0 

AC citrus/orange 

 

1034 

2.0 

AC geranium 

1036 

 

3.0 

NB nutty 

1039 

 

2.4 

NB green 

 

1046 

2.3 

AC sweet/burnt 

sugar 

1047 

 

2.5 

AC vinegar 

1049 

 

1.3 

NB plastic/rubber/chemical 

 

1050 

 

2.8 

NB roasted 

1057 

 

1.5 

NB rosy/green 

1058 

 

4.8 

NB popcorn 

 

1063 

2.0 

NB nutty/cheesy 

 

1064 

2.5 

NB burnt 

plastic/weeds 

 

1071 

2.8 

NB oxidized 

1071 

 

3.0 

NB brothy/potato 

1074 

 

2.5 

NB fruity 

1080 

 

2.9 

background image

 

203

AC cedar 

1081 

 

3.0 

AC burnt 

sugar/nutty 

 

1086 

1.8 

NB popcorn 

1087 

 

2.5 

NB burnt 

1089 

 

3.0 

NB dusty/rubber 

1094 

 

3.0 

AC charred/brothy 

1095 

 

3.3 

NB peanuts 

1095 

 

2.5 

NB sweet/fruity 

 

1095 

2.8 

NB chemical/cabbage 

 

1101 

2.5 

AC cotton 

candy 

1102 

 

4.1 

NB minty 

1109 

 

3.0 

NB fried 

1112 

 

3.5 

AC geranium/nutty/roasted 

1113 

 

3.5 

AC fruity 

 

1120 

2.3 

NB green 

 

1122 

2.0 

NB ammonia/brothy 

 

1128 

3.5 

NB popcorn 

1139 

 

2.8 

NB green/floral 

 

1142 

2.3 

NB minty 

 

1142 

3.0 

AC burnt 

sugar/dusty 

1145 

 

2.3 

NB burnt 

1151 

 

4.0 

NB sweet/roasted 

1153 

 

2.0 

AC burnt 

sugar 

 

1154 

2.0 

NB smoky/dirty 

1155 

 

3.8 

NB cucumber/floral 

1159 

 

3.5 

NB nutty 

 

1159 

2.5 

NB paremsan/fatty 

 

1163 

2.5 

AC burnt 

sugar 

1163 

 

4.3 

NB cabbage 

 

1168 

2.0 

NB carpet 

1171 

 

4.3 

NB metallic 

 

1172 

2.5 

NB green/weedy 

 

1172 

2.0 

NB old 

books 

1176 

 

3.0 

NB solvent 

 

 

1182 

1.5 

NB sweaty 

1182 

 

3.0 

NB roasted/popcorn 

1184 

 

3.8 

NB oregano 

 

1184 

2.0 

AC caramel 

1185 

 

2.8 

NB bell 

pepper 

1186 

 

3.0 

AC fruity 

 

1188 

1.8 

NB wine 

1188 

 

3.5 

NB sour 

1196 

 

2.3 

NB burnt 

 

1197 

2.0 

NB sulfur/fatty 

1201 

 

3.0 

background image

 

204

NB rosy 

1202 

 

2.8 

NB malty 

 

 

1205 

2.0 

NB potato/fatty 

 

1211 

3.8 

NB plastic 

bottle 

 

1218 

1.5 

NB licorice 

1220 

 

4.2 

AC sulfur/rubber/exhaust  1223 

 

4.2 

NB fried/oxidized 

1231 

 

4.0 

NB dish 

soap 

 

1232 

2.0 

NB garlic 

 

1232 

2.3 

AC sweet/burnt 

sugar 

 

1236 

1.8 

NB citrus/green 

 

1239 

3.0 

AC burnt 

sugar 

1240 

 

2.3 

NB catty/weeds 

 

1243 

3.3 

AC fruity 

1246 

 

2.0 

NB smoke/burnt 

 

1257 

3.0 

NB solvent/sweet 

 

1257 

1.5 

NB sweat 

 

1257 

2.0 

NB citrus 

 

1263 

2.8 

NB sweet/spicy 

1264 

 

3.0 

NB floral/cucumber 

1267 

 

3.0 

NB mushroom/metallic 

 

1270 

3.3 

NB burnt 

rubber 

1275 

 

3.5 

NB nutty 

 

1277 

3.5 

NB popcorn 

 

1278 

3.5 

AC sweet/fruity 

 

1281 

2.3 

NB vegetable/green 

 

1286 

3.0 

AC waxy 

1292 

 

2.0 

NB fecal/mothball 

1294 

 

3.5 

NB spicy 

 

1295 

3.0 

NB nutty 

 

1303 

4.5 

NB oxidized/licorice 

1309 

 

3.5 

NB wine/alcohol 

1318 

 

2.5 

AC roasted 

 

1319 

1.5 

NB rosy 

1322 

 

3.0 

AC bubble 

gum/fruity 

 

1323 

2.0 

NB bell 

pepper 

1330 

 

3.0 

NB catty 

 

 

1334 

4.9 

NB vinegar 

 

 

1334 

3.8 

AC burnt 

sugar 

1335 

 

3.0 

NB spicy 

 

1337 

3.0 

NB rubber/sulfur 

 

1338 

3.0 

NB fried/oxidized 

1343 

 

3.8 

NB citrus 

 

1349 

3.5 

NB minty/spicy 

1349 

 

4.0 

background image

 

205

AC brothy 

1350 

 

2.0 

NB garlic 

 

1352 

5.0 

AC burnt 

 

1352 

2.0 

NB corn 

chip 

 

1355 

3.0 

NB sweet/hay/oxidized  1357 

 

3.7 

NB malty/grainy 

 

1361 

4.0 

NB peanut 

butter 

 

1363 

3.0 

AC vinegar 

 

1368 

3.5 

AC sweet 

1369 

 

1.5 

NB burnt 

corn 

chip 

 

1372 

3.5 

AC spicy/pepper 

 

1374 

3.0 

AC sweet/burnt 

sugar 

1376 

 

3.0 

NB charcoal/smoky/wood 1378 

 

2.5 

NB green/fresh 

 

1381 

2.5 

NB potato 

 

1386 

4.5 

NB dusty/cheesy 

 

1387 

2.0 

AC fatty 

1387 

 

2.0 

AC mushroom 

 

1387 

2.0 

NB sulfur 

 

1388 

4.0 

NB popcorn 

 

1391 

3.2 

NB burnt 

toast 

 

1399 

4.0 

NB frier 

oil 

 

1399 

4.0 

NB sweet/cloying/hay 

1404 

 

2.3 

NB green 

peanuts 

 

1405 

4.5 

AC burnt/charred 

 

1409 

3.5 

NB grainy/smoky 

1411 

 

3.0 

NB plastic 

 

1411 

4.0 

AC potato/brothy 

 

1416 

3.5 

NB oxidized 

1417 

 

3.3 

AC vinegar 

 

1420 

3.3 

NB stale 

 

1424 

2.0 

NB smoked 

meat 

1425 

 

2.5 

NB garlic 

 

1436 

3.0 

NB burnt/nutty 

 

1437 

3.0 

AC spicy 

 

1439 

 

1.5 

NB spicy 

 

1440 

3.0 

NB parmesan 

cheese 

 

1442 

3.5 

AC carpet/dusty 

 

1445 

2.5 

NB green/floral 

1445 

 

3.0 

NB plastic/sweet/burnt 

 

1448 

3.0 

NB licorice 

1450 

 

1.5 

NB fried/garlic 

1462 

 

1.5 

NB wood/sweet 

1464 

 

3.0 

AC sweet/fruity 

 

1467 

2.3 

background image

 

206

AC sweet/fruity 

1471 

 

2.5 

NB rosy 

1472 

 

3.0 

NB nutty 

 

1476 

2.0 

NB sweet/hay 

 

1478 

 

2.0 

NB sweet/alcoholic 

 

1481 

3.0 

AC vanilla 

1482 

 

2.9 

NB barn/fecal 

1483 

 

2.3 

NB green 

 

1484 

3.0 

NB smoke/chemical 

 

1485 

4.5 

NB oxidized 

 

1490 

3.0 

AC old 

books 

1495 

 

2.5 

NB smoked/peanut 

1498 

 

3.0 

NB nutty/roasted 

 

1504 

2.5 

AC fruity/sugary 

 

1509 

3.0 

NB sweet/bell 

pepper 

 

1513 

3.5 

NB floral/cucumber 

1514 

 

3.0 

AC acidic 

 

1523 

2.5 

AC cheesy 

 

1538 

2.5 

NB peanut 

candy 

1539 

 

3.0 

NB popcorn 

 

1543 

3.5 

NB rosy 

1544 

 

2.8 

NB fruity 

 

1554 

2.0 

NB spicy 

 

1555 

3.0 

AC sweet/solventy 

1560 

 

2.3 

AC popcorn 

 

1560 

2.0 

NB stale/malty 

 

1565 

3.5 

NB rosy 

 

1571 

5.5 

NB floral/hay 

1572 

 

2.8 

NB oxidized/butyric 

acid 

 

1577 

3.0 

AC nutty 

 

1578 

 

2.0 

AC vanilla/waxy 

1584 

 

3.0 

AC cheesy 

 

1587 

3.8 

AC sweaty 

 

1592 

3.5 

NB rosy 

 

1605 

4.2 

NB honey/hay 

1618 

 

2.0 

AC burnt/cheesy 

 

1628 

5.0 

NB fatty 

1632 

 

1.8 

NB roasted 

1636 

 

2.3 

AC waxy 

1636 

 

3.5 

NB fruity 

 

1638 

2.5 

NB brothy 

 

1648 

3.3 

AC sweet/honey 

1655 

 

1.5 

NB plastic 

bottle 

 

1660 

2.5 

NB bell 

pepper 

 

1662 

2.0 

background image

 

207

NB fruity/floral 

 

1670 

3.0 

NB rosy 

1671 

 

2.0 

NB oxidized/fried 

 

1678 

2.3 

AC sweaty 

 

1681 

1.5 

AC sweet 

1689 

 

2.3 

NB popcorn/nutty 

 

1689 

3.8 

NB fried/fatty 

1696 

 

2.0 

AC sweet/fruity 

 

1710 

1.5 

AC burnt 

toast 

 

1721 

2.0 

NB popcorn 

 

1728 

2.5 

AC burnt 

sugar 

 

1730 

2.0 

AC strawberry/burnt 

sugar 1738 

 

2.0 

NB hay/oxidized 

1740 

 1.5 

NB peanut 

butter 

 

1746 

3.0 

NB burnt 

oil/fatty/oxidized   

1751 

3.5 

AC sour/fruity 

1760 

 

1.8 

NB cheesy 

 

1763 

3.5 

NB sweet/burnt 

1775 

 

2.5 

AC sweaty/dirty 

 

1775 

3.0 

NB 

fatty/spicy corn chip 

 

1786 

3.5 

AC maple 

syrup 

 

1789 

3.5 

NB grainy/cheesy 

 

1799 

3.5 

AC fatty/sweet/coconut  1807 

 

3.5 

AC hay/sweet 

 

1813 

2.8 

NB burnt 

1813 

 

2.0 

NB minty/tobacco 

 

1822 

3.0 

NB chemical/burnt 

 

1825 

3.0 

NB grainy/nutty 

 

1830 

3.3 

NB onion/brothy 

 

1842 

2.5 

AC hay/licorice 

1850 

 

1.5 

NB nutty 

 

1858 

3.5 

NB oxidized 

 

1863 

4.0 

AC burnt 

sugar 

 

1880 

2.0 

NB floral 

 

1888 

2.5 

AC burnt/waxy 

1913 

 

1.5 

NB burnt/sulfur 

 

1917 

2.0 

AC bready 

 

1925 

2.5 

AC cotton 

candy 

 

1936 

3.0 

NB brothy/fatty 

 

1938 

1.5 

AC fruity 

1940 

 

2.0 

NB sweet 

 

1945 

1.8 

NB peanut 

butter 

 

1959 

3.0 

AC sour 

1971 

 

2.0 

AC 

burnt sugar  

 

1981 

3.3 

background image

 

208

AC sour 

 

 

1982 

1.5 

AC green/hay/fatty 

1989 

 

2.0 

AC burnt 

sugar/fruity 

 

1998 

1.5 

NB burnt 

toast 

 

2008 

2.5 

AC burnt 

sugar 

 

2022 

2.8 

AC burnt 

2039 

 

1.5 

NB floral 

 

2049 

2.0 

AC fruity 

2052 

 

2.0 

NB nutty/green 

 

2059 

2.0 

NB fecal/stale/burnt 

 

2068 

2.5 

NB burnt 

nutty 

 

2089 

2.3 

NB fruity 

 

2104 

1.5 

AC hay/licorice 

2111 

 

2.5 

AC burnt 

sugar 

 

2124 

2.0 

NB beany 

 

2133 

2.3 

AC maple 

syrup 

 

2171 

2.3 

NB sweet/citrus 

 

2177 

2.5 

AC burnt/sweaty 

 

2187 

2.0 

NB sweet/pumpkin 

spice 

 

2203 

2.0 

AC sweet/fruity 

 

2209 

2.5 

NB brothy/smoky 

 

2228 

2.3 

NB corn 

chips 

 

2237 

3.0 

AC burnt 

sugar 

 

2237 

1.5 

NB burnt 

corn 

 

2284 

2.3 

AC sweet/floral 

 

2321 

2.0 

AC 

sweet/burnt   

 

2319 

1.8 

   

 

a

Fraction in which odor was detected, AC = acid, NB = neutral/basic 

b

Odor description by GC/O 

 

c

Retention indices (RI) calculated from GC/O data 

d

Odor intensity for each compound averaged from panelist data  

e

Compounds in bold were determined to have high impact on flavor  

     through subsequent AEDA analysis (Schirack et al., 2006).   
     AEDA was conducted on the DB-5 column for NB compounds,  
     and on the DB-WAX column for AC compounds.