Using Matlab for Solving Differential Equations (jnl article) (1999) WW

background image

!

"#!$

%

&

'

(

)

*

)

¼

*

(

¼

+

,-

)

*

(

)

*

&

!

"#!$

.

#&

!

"#!$

/

'

(

0

)

¼

*

(

¼

)00*

"

&

!

"#!$

0

background image

"

1

2

/

3&

!

"#!$

%

41

%

/

(

)

*

(

0

3&

41

+

+

'

!!"#

$

%

&

$'

(

)*

+

(

,*

'

-

-

.

)*

$

!!"#

/001

'

2201

"!(

3." #!#(.

4

%

&

$'

4

1

5

&

+

1

6

"

1

7

background image

!

"#!$

1

+&

)

+

,8

92:

;

!:!

":2-

*

5

/

)00*

<

0=

)6

,-

!

"#!$

&

$

&

*

2

¼

(

<

>

¼

(

?@

)

*

3&

!

"#!$

'

55

6/

%781

55

921

55

68

:0;

; 1

55

55

;"!#<!=

";

55

,);

;

55

-);

);

"

!

"#!$

$

&

&

"

%

0

5

+

A

background image

0

2

4

6

8

10

12

14

16

18

0

100

200

300

400

500

600

700

MATLAB Solution of Verhulst Model

t (hours)

N (biomass)

%

0'

2

/

!

"#!$

:0

;

'

(

<BB.

(

@@B

+

'

)<*

(

?@

C

background image

+

'

(

)

*

)

¼

*

(

´¼µ

)77*

4

"

'

½

(

½

)

½

¾

*

¾

(

¾

)

½

¾

*

(

(

)

½

¾

*

'

½

)

¼

*

(

´¼µ

½

¾

)

¼

*

(

´¼µ

¾

(

)

¼

*

(

´¼µ

½

¾

!

)2

D

2

0<7

4D

2

0B*

"

1

"

'

(

)

*

(

)

*

)7A*

1

B

background image

'

)

¼

*

(

¼

)

¼

*

(

¼

)7A*

&

4

$

!

"#!$

:0

E

&

$

"

!

"#!$

"

)7A*

!

"#!$

1

1

'

(

½

¾

½

(

¾

(

:4

)7A*

'

(

)

*

(

)

¾

*

½

)

½

*

¾

)

¼

*

(

¼

¼

)7C*

)77*

5

41

)

*

@

background image

+

!!"#

,$

,

&

)

,

-

-$

-

&

,

-

(

)*

+

+%,

+>-

,

-

(

,*

)

.

)*

%

,$

>

-$

!!"#

?1

)0$>1

>1

%1

#!<!#

#!#

3#.

#.

".

3.(#

!(!=<

,+%1

-+>1

#

!

!

3.<"

3#.

@(#A

#@.

#(

+>%1

"!(

3." #!#(.

%4,&)4,4-1

>4-&4,4-1

5

4

<

7B

>

¼

(

<7

¼

(

<0=

)

>

*

"

!

"#!$

'

F

background image

55

6/

>081

55

+6/>

/%781

55

6+8

:0;;+ 1

"

!

"#!$

>

"

+

"

1

½

¾

"

;

)

½

*

)

%

7*'

55

+*%

55

;

#;

55

,);;

55

-);,;

&

)

¾

*

)

%

A*'

55

+*>

55

;

#;

55

,);;

55

-);-;

!

)%

C*'

55

+

55

;

#;

55

,);;

55

-);

+;

%

)

*

)%

B*'

55

+*%+*>

55

;

;

55

,);,;

55

-);-;

=

background image

0

0.5

1

1.5

2

2.5

0

5

10

15

20

25

30

Population of First Species versus Time

t

x

%

7'

2

)7A*

;

'

(

A

(

B7

(

7

(

0

+

'

)<*

(

<7

)<*

(

<0=

?

background image

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Population of Second Species versus Time

t

y

%

A'

2

)7A*

;

'

(

A

(

B7

(

7

(

0

+

'

)<*

(

<7

)<*

(

<0=

0<

background image

0

0.5

1

1.5

2

2.5

0

5

10

15

20

25

30

Populations versus Time

t

Population size

%

C'

2

)7A*

;

'

(

A

(

B7

(

7

(

0

+

'

)<*

(

<7

)<*

(

<0=

00

background image

0

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

State Space Plot

x

y

%

B'

2

)7A*

;

'

(

A

(

B7

(

7

(

0

+

'

)<*

(

<7

)<*

(

<0=

07


Wyszukiwarka

Podobne podstrony:
The algorithm of solving differential equations in continuous model of tall buildings subjected to c
Mathematica package for anal and ctl of chaos in nonlin systems [jnl article] (1998) WW
Matlab Tutorial for Systems and Control Theory (MIT) (1999) WW
Generalized Power Series in a Non Archimedean Field [jnl article] (1991) WW
Minkowski Metrics [jnl article] (2002) WW
Wavelet Transforms that Map Integers to Integers [jnl article] (1996) WW
Elliptic Curves [jnl article] B Poonen WW
Connectionism Past, Present, and Future [jnl article] J Pollack WW
A Genetic Algorithm Tutorial [jnl article] D Whitley WW
The Birth of Model Theory [jnl article] C Badesa WW
Algorithm Collections for Digital Signal Processing Applications using Matlab E S Gopi
Algorithm Collections for Digital Signal Processing Applications using Matlab E S Gopi
Mathematical Basis for Physical Inference [jnl article] A Tarantola, K Mosegaard (2000) WW
Differential Equations for Reliability, Maintainability, and Availability
Pinchover Y , Rubinstein J An introduction to partial differential equations Extended solutions for
CALC1 L 11 12 Differenial Equations
G B Folland Lectures on Partial Differential Equations

więcej podobnych podstron