Section 7 student notes

background image

Demand Forecasting

(Part Two)

Harry Kogetsidis

School of Business

background image

Lecture’s topics

• How can forecasting methods be used to

predict demand?

• How does the method of Holt’s exponential

smoothing work?

• How do we measure forecast accuracy?

background image

Holt’s Exponential Smoothing

An extension of simple exponential smoothing
which provides a more appropriate forecasting
method for time series that have a trend.

trend component

Like simple exponential smoothing, this method
also aims to smooth out random fluctuations
in the data values.

irregular component

background image

Holt’s Exponential Smoothing

deals with random fluctuations

L

t

= Y

t

+ (1-)(L

t-1

+ T

t-1

)

(1)

deals with trend

T

t

= (L

t

– L

t-1

) + (1-)T

t-1

(2)

background image

Holt’s Exponential Smoothing

smoothing constant 

L

t

= Y

t

+ (1-)(L

t-1

+ T

t-1

)

(1)

smoothing constant 

T

t

= (L

t

– L

t-1

) + (1-)T

t-1

(2)

background image

Holt’s Exponential Smoothing

L

t

= Y

t

+ (1-)(L

t-1

+ T

t-1

)

(1)

T

t

= (L

t

– L

t-1

) + (1-)T

t-1

(2)

F

t+1

= L

t

+ T

t

(3)

background image

Holt’s Exponential Smoothing

L

t

= Y

t

+ (1-)(L

t-1

+ T

t-1

)

(1)

T

t

= (L

t

– L

t-1

) + (1-)T

t-1

(2)

F

t+1

= L

t

+ T

t

(3)

forecast for period t+1

background image

Holt’s exponential smoothing (=0.5,

=0.5)

Period

Y

t

F

t

L

t

T

t

F

t

Jan 20

20.0

20.0

0.0

Feb 24

20.0

Mar 27 23.2

Apr 31 26.2

May 37 30.1

Jun 47 35.6

Jul

53 44.7

Aug 62 51.3

Sep

59.9


background image

Holt’s exponential smoothing (=0.5,

=0.5)

Period

Y

t

F

t

L

t

T

t

F

t

Jan 20

20.0

20.0

0.0

Feb 24

20.0

Mar 27 23.2

Apr 31 26.2

May 37 30.1

Jun 47 35.6

Jul

53 44.7

Aug 62 51.3

Sep

59.9

L

t

= Y

t

+ (1-)(L

t-1

+ T

t-1

)

background image

Holt’s exponential smoothing (=0.5,

=0.5)

Period

Y

t

F

t

L

t

T

t

F

t

Jan 20

20.0

20.0

0.0

Feb 24

20.0

22.0

Mar 27 23.2

Apr 31 26.2

May 37 30.1

Jun 47 35.6

Jul

53 44.7

Aug 62 51.3

Sep

59.9

T

t

= (L

t

– L

t-1

) + (1-)T

t-1

background image

Holt’s exponential smoothing (=0.5,

=0.5)

Period

Y

t

F

t

L

t

T

t

F

t

Jan 20

20.0

20.0

0.0

Feb 24

20.0

22.0 1.0

Mar 27 23.2

Apr 31 26.2

May 37 30.1

Jun 47 35.6

Jul

53 44.7

Aug 62 51.3

Sep 59.9




background image

Holt’s exponential smoothing (=0.5,

=0.5)

Period

Y

t

F

t

L

t

T

t

F

t

Jan 20

20.0

20.0

0.0

-

Feb 24

20.0

22.0 1.0

Mar 27 23.2

25.0

2.0

Apr 31 26.2

29.0

3.0

May 37 30.1

34.5

4.3

Jun 47 35.6

42.9

6.3

Jul

53 44.7

51.1

7.3

Aug 62 51.3

60.2

8.2

Sep 59.9

F

t+1

= L

t

+ T

t


background image

Holt’s exponential smoothing (=0.5,

=0.5)

Period

Y

t

F

t

L

t

T

t

F

t

|e

t

| |e

t

/Y

t

|

Jan 20

20.0

20.0

0.0

-

- -

Feb 24

20.0

22.0 1.0

20.0

Mar 27 23.2

25.0

2.0

23.0

Apr 31 26.2

29.0

3.0

27.0

May 37 30.1

34.5

4.3

32.0

Jun 47 35.6

42.9

6.3

38.8

Jul

53 44.7

51.1

7.3

49.2

Aug 62 51.3

60.2

8.2

58.4

Sep 59.9

68.4


background image

Comparing the two models

MAD

MAPE

• Simple exponential smoothing (=0.8)

• Holt’s exponential smoothing (=0.5, =0.5)


Document Outline


Wyszukiwarka

Podobne podstrony:
Section 2 student notes
Section 9 student notes
Section 6 student notes
Section 3 student notes
Section 4 student notes
Section 5 student notes
Section 1 student notes
Section 8 student notes
Section 10 student notes
Section 11 student notes
Posadzki section 2 1 studenci
Posadzki section 2 3 studenci
Posadzki section 3 studenci
Posadzki section 1 studenci
Posadzki section 2 studenci
Posadzki section 2 2 studenci
17 Steps to Better Presentations Student Notes

więcej podobnych podstron