WYKA ADY Z MECHANIKI BUDOWLI 1
METODA CIŻARKÓW SPRŻYSTYCH
Olga Kopacz, Adam Aodygowski, Wojciech Pawłowski,
Michał Płotkowiak, Krzysztof Tymper
Konsultacje naukowe: prof. dr hab. JERZY RAKOWSKI
Poznań 2002/2003
MECHANIKA BUDOWLI 6
CIŻARY SPRŻYSTE
Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w
ramach, Å‚ukach, kratownicach statycznie wyznaczalnych.
" przemieszcznie punktu A po kierunku działania jedynkowej siły wirtualnej,
przyłożonej w tym punkcie
" obrót przekroju A
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 2
METODA CIŻARKÓW SPRŻYSTYCH
" wzajemny obrót punktów A i B
" zbliżenie punktów A i B
" obrót cięciwy o długości a
" zmiana kąta zawartego między stycznymi do prętów zbiegających się w
przegubie
" obrót pręta kratownicy D o długości a
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 3
METODA CIŻARKÓW SPRŻYSTYCH
" wzajemne zbliżenie węzłów A i B (względnie oddalenie)
" zmiana kąta zawartego między prętami o długości a i b
Równanie pracy wirtualnej dla kratownicy uwzględnia jedynie działanie
siły normalnej (siły podłużnej w prętach).
(
NPj)
1´ = ( + Ä…t Å" t )l
(6.1)
"N j j j
EAj
j
gdzie j- numer pręta
NP(j)- siła normalna w j- tym pręcie, będąca wynikiem działania obciążenia P
N -siła normalna w j-tym pręcie będąca wynikiem działania obciążenia wirtualnego
j
EAj- sztywność podłużna j- ego pręta
ąt-współczynnik przewodzenia ciepła j-ego pręta
tj-przyrost temperatury w j-tym pręcie (równomierne ogrzanie lub oziębienie pręta)
t=to-tm(to-ekstremalna temp. we włóknie środkowym, tm-temp. montażu)
lj-długość j-ego pręta
Ciężary sprężyste (ciężarki sprężyste)
Jest to jedna z metod obliczania linii ugięcia, stosowana najczęściej przy
wyznaczaniu składowych przemieszczeń pewnej grupy punktów układu (dotyczy to
punktów osi ramy lub łuku, pasa górnego, dolnego lub wszystkich węzłów kratownicy
równocześnie)
Posłużmy się pewną analogią:
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 4
METODA CIŻARKÓW SPRŻYSTYCH
Rozpatrzmy pewien układ belkowy obciążony rzeczywistymi siłami zewnętrznymi
Siły te wywołują poniższe wykresy sił poprzecznych i momentów zginających:
Õi
Õi+1
Z rysunku wynika:
M - M dM
i i-1
tgÕi = = = Til
(6.2)
ai dx
i
M - M dM
i+1 i
tgÕi+1 = = = Ti p
(6.3)
ai+1 dx
i+1
Biorąc pod uwagę konwencję znakowania sił poprzecznych możemy zapisać:
Pi = Til - Ti p = tgÕi - tgÕi+1
(6.4)
Miary kątów są bardzo małe, możemy zatem przyjąć że tgąH"ą, czyli:
Pi H" Õi -Õi+1
(6.5)
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 5
METODA CIŻARKÓW SPRŻYSTYCH
Rozpatrzmy teraz układ belkowy, do którego przyłożone fikcyjne obciążenie w postaci
sił skupionych W. Aproksymując linię ugięcia belki łamaną, otrzymujemy następujący
wykres:
´i-1 ´i ´i+1
Ä…i
Ä…i
Wykres spełnia następujące zależności:
´i - ´i-1 ´i+1 - ´i
tgÄ…i = H" Ä…i , tgÄ…i+1 = H" Ä…i+1
(6.6)
ai ai+1
Jeżeli zaÅ‚ożymy, że wykres ugięć ´(x) jest identyczny z wykresem momentów
zginajÄ…cych wywoÅ‚anych grupÄ… siÅ‚ skupionych Wi, to na podstawie zaÅ‚ożenia, że Ä…i=Õi
(porównanie z poprzednim przypadkiem) należy uznać, że Wi są wielkościami, które w
rzeczywistości powinny być różnicą kątów
Wi = Ä…i -Ä…i+1
(6.7)
Wynika z tego, że chcąc znalezć linię ugięcia układu, należy obliczyć powyższą różnicę
kątów ą, czego najłatwiej dokonać korzystając z zasady prac wirtualnych
Nazywając siły Wi ciężarami sprężystymi, możemy podać następujące definicje:
Wi ciężar sprężysty
" jest to wielkość, której wartość określa różnica kątów (do poziomu) dwóch
sąsiednich linii ugięcia
" jest to fikcyjne obciążenie, które wprowadzone do belki zastępczej daje
wykres momentów zginających, pokrywający się z linią ugięcia układu od
obciążenia rzeczywistego
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 6
METODA CIŻARKÓW SPRŻYSTYCH
Sposoby obliczania ciężarów sprężystych dla układów kratowych
statycznie wyznaczalnych.
W celu obliczenia ciężarów sprężystych obciążamy układ siłami:1/ak,
1/ak+1/ak+1,1/ak+1 działającymi na trzy sąsiednie węzły k-1,k,k+1 wzdłuż prostych
równolegÅ‚ych do szukanych ugięć ´k-1, ´k, ´k+1.
Wynika z tego że ciężary sprężyste obliczyć możemy ze wzoru:
(
N Å" NPj)
j
Wi = Å" l
(6.8)
"
EAj j
j
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 7
METODA CIŻARKÓW SPRŻYSTYCH
Pręty oznaczone kolorem niebieskim stanowią układ samo równoważny (siły
nie wywołują reakcji podporowych w kratownicy)
wykres momentów od obciążenia fikcyjnego Wi , równoważny linii ugięcia pasa dolnego
kratownicy
W przypadku gdy badany pas kratownicy nie jest prostopadły do kierunku ugięć,
konieczne sÄ… dodatkowe obliczenia (patrz W.Nowacki Mechanika Budowli tom1,
rozdział 10.2.)
Powyższy sposób rozszerzymy na obliczanie ugięć w układach zginanych
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 8
METODA CIŻARKÓW SPRŻYSTYCH
²k +1
²k
Å„Å‚ üÅ‚
P
Wk =
(6.9)
òÅ‚
"ół ( M + ąt"t )ds + N ( NP + ątt)dsżł
+"M EJ h +"
EA
ss þÅ‚
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 9
METODA CIŻARKÓW SPRŻYSTYCH
1 1 1 2 1 1 1 2
îÅ‚ îÅ‚
p p p p
Wk = Å" 1 Å" lk ( M + M )Å‚Å‚ + Å" 1 Å" lk ( M + M )Å‚Å‚ +
k -1 k k +1 k
śł śł
EJk ïÅ‚2 3 3 EJk +1 ïÅ‚2 +1 3 3
ðÅ‚ ûÅ‚ ðÅ‚ ûÅ‚
îÅ‚ Å‚Å‚ îÅ‚ Å‚Å‚ Ä…t"tk
1 1 1 1 1
+ Å" tg²k Å" lk Å" Nkp śł + Å" tg²k +1 Å" lk +1 Å" Nkp+1śł + Å" Å" 1lk +
EAk ïÅ‚- lk EAk ïÅ‚l hk 2
ðÅ‚ ûÅ‚ +1 ðÅ‚ k +1 ûÅ‚
Ä…t"tk +1 1 1 1
+ Å" Å" 1lk +1 + Ä…ttk (- Å" tg²k Å" lk ) + Ä…tt( Å" tg²k +1 Å" lk +1)
hk +1 2 lk lk +1
Po skróceniu i wyłączeniu wspólnych czynników:
lk p p lk
p p
Wk = [2M + M ]+ [2M + M ]+
6EJk k k -1 6EJk +1 k k +1
ëÅ‚ öÅ‚
(-1)tg²k tg²k +1 Ä…t"t lk lk +1 ÷Å‚ (6.10)
ìÅ‚
+ Å" Nkp + Å" Nkp+1 + + +
ìÅ‚
EAk EAk +1 2 hk hk +1 ÷Å‚
íÅ‚ Å‚Å‚
+ Ä…tt(-tg²k + tg²k +1)
Jeśli wykres momentów jest krzywoliniowy to wzór na ciężar sprężysty
przyjmuje postać:
lk p p
Wk = [2M + M ]+ ... + "W
(6.11)
6EJk k k -1
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 10
METODA CIŻARKÓW SPRŻYSTYCH
gdzie "W=
Po obliczeniu ciężarów sprężystych obciążamy nimi belkę fikcyjną, taką by
spełniała warunki brzegowe układu rzeczywistego (analogia do met. obciążeń
wtórnych).
Można jednak zamiast belki fikcyjnej obciążać ciężarami sprężystymi belki na
dwóch podporach, jednak przy wykonaniu pewnego zabiegu graficznego.
Dla belki podpartej na dwóch końcach wykres momentów powstałych od obciążeń W
będzie równy zeru w punktach A i B (ugięcie tych punktów równe zeru). Jednak
warunkiem brzegowym belki rzeczywistej jest zerowe ugięcie w punktach B i C.
Należy postąpić w następujący sposób: po narysowaniu wykresu momentów podpartej
na obu końcach, kreślimy prostą zamykającą tak by przecięła wykres w punktach B i C.
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 11
METODA CIŻARKÓW SPRŻYSTYCH
Rzędne zakreskowanego pola miedzy łamaną a prostą zamykającą stanowią
wartości ugięć kolejnych punktów belki rzeczywistej (na niebiesko oznaczono ugięcia w
punktach przyłożenia ciężarów sprężystych).
Analogicznie postępujemy w przypadku kratownic:
rys. a) układ rzeczywisty
rys. b) układ zastępczy (analogia do met. obciazen wtórnych)
rys. c) układ zastępczy (belka wolnopodparta na obu końcach) z prowadzeniem zabiegu
graficznego (patrz przykład poprzedni)
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
WYKA ADY Z MECHANIKI BUDOWLI 12
METODA CIŻARKÓW SPRŻYSTYCH
W przypadku występowania przegubu wewnętrznego ciężar sprężysty dla tego punktu
należy obliczyć indywidualnie biorąc pod uwagę fakt, że wykresy momentów
wirtualnych występują w całym układzie.
Wszystkie wartości Wk obliczamy ze wzoru (6.31) natomiast wielkość Wm obliczamy z
uwzględnieniem faktu, że obciążenie wirtualne w punkcie m wywołuje reakcje poziome
H. Zatem stan naprężenia występuje we wszystkich prętach kratownicy a nie jak
poprzednio tylko w układach samorównoważnych (oznaczone kolorem niebieskim).
Politechnika PoznaÅ„ska® Kopacz, Aodygowski, PawÅ‚owski, PÅ‚otkowiak, Tymper
Wyszukiwarka
Podobne podstrony:
14 mechanika budowli wykład 14 metoda przemieszczen?09 mechanika budowli wykład 09 metoda sil?zdom mechanika budowli linie wplywu preta kratownicy metoda ciezarow sprezystych01 mechanika budowli wykład 01 wstep przypomnienie praca na przemieszczeniach21 mechanika budowli wykład 21 drgania wymuszone nietlumione10 mechanika budowli wykład 10 rozwiazywanie?lek wieloprzeslowych statycznie niewyzn20 mechanika budowli wykład 20 drgania pretow pryzmatycznych?18 mechanika budowli wykład 18 statecznosc ukladow pretowychwięcej podobnych podstron