Zagadnienia do egzaminu z logiki 3 1


Strona 1 z 7
Zagadnienia do egzaminu z logiki
Na wstępie zaznaczę, że logika która nas obowiązuje składa się z kilku działów których w większości
przypadków nie należy ze sobą mieszać. Innymi słowy  radzę zaobserwować które pytania odnoszą
się do których działów. Wspominam o tym, ponieważ niejednokrotnie wydają się one być bardzo
podobne i kilka razy zdarzyło mi się odpowiadać na niewłaściwe pytanie.
W poniższym zestawie mamy do czynienia z zagadnieniami:
Logiki języka czyli semiotyki
Klasycznego rachunku zdań
Klasycznego rachunku kwantyfikatorów
Klasycznego rachunku predykatów
Pragmatyki logicznej
1. Omów funkcje wypowiedzi.
Nie wszystkie spośród wymienionych funkcji były podane na wykładzie, nie wszystkie też znajdują się
w podręcznikach. Każdy podręcznik zawiera 4 spośród wymienionych. Sytuacja przypomina mędrców
greckich toteż zebrałem tu wszystkie.
- Ekspresyjna  ujawnianie myśli, wyrażanie swojego stanu psychicznego, także perswazja w
znaczeniu porady
- Perswazyjno-sugestyjna  słowo bodziec, skłaniające do czegoś lub nakazujące coś, wyraża
obowiązki nakazy i zakazy np.  szanuj zieleń także wypowiedzi za temat cech jak pochwała
patriotyzmu czy zarzucanie tchórzostwa.
- Performatywna  inaczej ustawodawcza, kreująca nowe fakty społeczne jak np. wypowiadanie
wojny, uroczyste nadanie imienia lub przyrzeczenia. Tylko niektóre wypowiedzi w szeczóglnych
sytuacjach są performatywne.
- Racjonalna  funkcja o charakterze naukowo-encyklopedycznym, opisuje stan rzeczy czyli:
zdarzenia, własności przedmiotów, relacje między przedmiotami lub procesy.
- Informacyjno-opisowa  np. spiker na dworcu
Wypowiedz - strona fizyczna
- strona znaczeniowa - w odniesieniu do rzeczywistości
- sens wyabstrahowany od rzeczywistości
2. Na czym polega różnica między stwierdzaniem a wyrażaniem
Zdanie w sensie logicznym:
- stwierdza  zachodzenie stanu rzeczy
- wyraża  myśl zdającą sprawę ze stanu rzeczy
3. Logiczna teoria języka.
Inaczej semiotyka logiczna, składa się z:
-Syntaktyka (logiczna)
Zajmuje się składnią  bada relacje wewnątrz językowe nie wychodząc poza język
-Semantyka (logiczna)
Bada relacje zachodzące pomiędzy językiem a rzeczywistością
-Pragmatyka (logiczna)
Bada relacje pomiędzy językiem a jego użytkownikami.
Na język składają się :
- słownictwo / zbiór słów
- reguły składniowe / gramatyka
- reguły interpretacji / znaczenia
Strona 1 z 7
Strona 2 z 7
4. Czym jest język z logicznego punktu widzenia?
Zdanie w sensie logicznym to tyle, co wypowiedz prawdziwa lub fałszywa. Logikę interesuje język jako
narzędzie służące do opisywania świata i skutecznego przekazywania myśli. Klasyczna definicja
prawdziwości zdania (Arystotelesa):  Zdanie A jest prawdziwe wtedy i tylko wtedy, gdy w
rzeczywistości jest tak, jak glosi zdanie A.
Wartość logiczna dowolnego zdania w sensie logicznym ma charakter obiektywny, tzn. niezależny od
poglądów ludzi.
5. W jaki sposób logika bada język?
jw. Jak dla mnie pytanie 3. 4. i 5. Są co najmniej bliskoznaczne. Jeśli ktoś się nie zgadza i uważa, że to
nie prawda a ja zwyczajnie z lenistwa coś pominąłem  proszę mi to udowodnić a dopiszę co trzeba.
6. Co to jest prawo logiczne klasycznego rachunku zdań?
 W poprawnym wnioskowaniu ważną rolę odgrywają takie schematy zdań złożonych, że każde zdanie
podpadające pod ten schemat jest zdaniem prawdziwym bez względu na wartości logiczne zdań, z
których jest zbudowane. Schematy takie nazywamy prawami lub tautologiami rachunku zdań.
7. Podstawowe prawa klasycznego rachunku zdań?
8. Czy zachodzą następujące relacje:
{p} |- p jest relacją dowodliwości (wynikania logicznego) lub znaczy, że p jest tautologią na podstawie
zbioru {p} przesłanek. Zdaniem dr Pluty, należy sobie z tym poradzić na bazie reguły odrywania i
podstawiania.
{~(p Ł ~q) , q , (r s) , r} |- p
np. na bazie reguły podstawiania podstawiamy  p pod  r i już widać, że  p jest dowodliwe na
podstawie danego zbioru. Brzmi prosto. Nie jestem jednak przekonany czy o to chodziło prof. Omyle.
{~(~q ~p) , q Ł r} |- s
np. podstawiamy  s pod  q oraz  r i w ten sposób otrzymujemy implikację (s Ł s)s która jest
tautologią. Ale ale! Mamy też wyrażenie ~(~s ~p) [lub ~(~s ~p)] które nie jest tautologią, więc
relacja nie zachodzi.
9. Omów aksjomatyczne ujęcie klasycznego rachunku zdań.
 Aksjomatyczny system rachunku zdań polega na tym, że przyjmuje się pewne wyrażenia, co do
których istnieje całkowita pewność, że są tautologiami, a następnie przy pomocy niezawonych reguł
wnioskowania prowadzących zawsze od tautologii do tautologii wyprowadza się z nich inne
wyrażenia tautologiczne. Przy tym dobór owych wyrażeń wyjściowych jak i przyjmowanych reguł
wnioskowania ma być taki, by każdą tautologię k.r.z. dało się w ten sposób wyprowadzić. Owe
wyjściowe wyrażenia nazywamy aksjomatami systemu, zaś przyjęte w systemie niezawodne reguły
wnioskowania tautologii z tautologii nazywamy pierwotnymi regułami inferencji (dowodzenia).
10. Spójniki klasyczne i nieklasyczne
-jednoargumentowe
 ~  spójnik negacji   nieprawda, że
-dwuargumentowe
 Ł  spójnik koniunkcji   i
   spójnik alternatywy   lub
   spójnik implikacji  fałszywy tylko wtedy gdy poprzednik jest prawdziwy a następnik fałszywy,
 jeżeli..to
  - spójnik równoważności   dokładnie wtedy, gdy
 ^  alternatywa rozłączna   dokładnie jeden
 /  alternatywa rozłączna (dysjunkcja)   najwyżej jeden
Strona 2 z 7
Strona 3 z 7
 Fl  Falsum, z każdej wartości czyni fałsz
 As  Asercja, pozostawia takie same wartości
 Ver  Verum, z każej wartości czyni prawdę
Spójniki nieklasyczne zdaniem dr Pluty to spójniki zapożyczone jak np. spójnik identyczności  =
11. Uzupełnij następujące formuły tak, aby z każdej otrzymać 5 różnych tautologii:
p & p , ~~p , (p p) , (p Ł p) , (p q)
& p p , ~~p , (p p) , (p Ł p) , (~p p)
(p q) & p , ~q , (q p) , ~(p q) , (p Ł ~q)
(p q) & (q p) , (~p q) , (~q p) , ~(~p Ł ~q) , [(p q) q]
To tylko rozwiązania przykładowe. Jest ich oczywiście nieskończona ilość. Ja natomiast starałem się
wybrać jak najkrótsze i najmniej skomplikowane. Spokojnie jednak można te tautologie wymyślić na
miejscu, pamiętając tylko, że ich wartość musi być 1 przy dowolnej wartości poszczególnych zdań.
12. Jaka jest różnica między prawem logicznym klasycznego rachunku zdań a tautologią
klasycznego rachunku zdań?
j.w. pytanie 6.
Wg. Prof. Heleny Rasiowej pojęcia te są synonimiczne.
Wg. Prof. Barbary Stanosz:  Wśród nieskończenie wielu tautologii rachunku zdań (zwanych także
prawami logiki zdań) też są synonimiczne.
Zasadniczo  tautologii jest nieskończenie wiele a prawa logiczne to niektóre wybrane tautologie
najczęściej opatrzone nazwami  to moje własne wnioskowanie.
13. Do czego potrzebne są prawa logiczne klasycznego rachunku zdań, omów na przykładzie.
Do metod numerycznych, do udowadniania i sprawdzania twierdzeń rachunku zdań, do pisania
algorytmów&
Przykłady można mnożyć, tylko po co ;p
14. Język rachunku predykatów.
15. Aksjomatyczne ujęcie klasycznego rachunku predykatów.
16. Ważniejsze tautologie klasycznego rachunku predykatów.
17. Czy przykładowo podana formuła jest tautologią rachunku kwantyfikatorów, odpowiedz
uzasadnij.
18. Jaka jest różnica między zbiorem zdań sprzecznych a parą zdań sprzecznych?
Zbiór zdań sprzecznych zawiera jedną lub więcej par zdań sprzecznych natomiast para zdań
sprzecznych są to dwa zdania sprzeczne które jednak mogą tworzyć zbiór. Różnica właściwie jest
żadna poza tym że w przypadku pary znamy ilość zdań a w przypadku zbioru wiemy tylko, że jest to
liczba parzysta.
19. Uzupełnij następujące zdania tak aby tworzyły pary zdań sprzecznych.
Zdania podkreślone rozwiązanie są na zasadzie kwadratu logicznego, resztę zdań można (zdaniem dr
Pluty rozwiązać dodając  nieprawda, że na początku. Zdania te można pózniej przekształcić na
zasadach krz.
- Tylko niektóre kobiety są motylami - Żadna kobieta nie jest motylem.
- Żaden minister nie jest szpiegiem - Niektórzy ministrowie są szpiegami.
Strona 3 z 7
Strona 4 z 7
- Jestem studentem i nauczycielem -
- Są kulturalni lekarze - Żaden lekarz nie jest kulturalny.
- Nie tylko ministrowie są szpiegami - Każdy szpieg jest ministrem.
- Żaden człowiek mądry nie jest przesądny - Niektórzy mądrzy ludzie są przesądni.
- Tylko niektórzy ministrowie są szpiegami - Żaden minister nie jest szpiegiem.
- Jeżeli nie uczyłeś się, to nie umiesz -
- Uczyłeś się a nie umiesz -
- Nieprawda, że uczyłeś się a nie umiesz. -
20. Zapisz w języku predykatów
- Istnieją dokładnie trzy przedmioty
- Istnieją co najmniej trzy przedmioty
- Istnieją co najwyżej trzy przedmioty
21. Co to jest tautologia klasycznego rachunku predykatów?
22. Aksjomaty dla predykatu identyczności.
23. Twierdzenie o dedukcji w wersji semantycznej dla klasycznego rachunku zdań.
Dla każdego zbioru formuł G i dowolnych formuł A, B, jeśli G {A} |- B to G |- (A B).
Jest to twierdzenie o dedukcji w rachunku zdań, nie wiem jednak czy jest w wersji semantycznej?
24. Czy wskazane formuły są tautologiami klasycznego rachunku zdań, odpowiedz uzasadnij.
To zadanie należy rozwiązać metodą kombinatoryczną tj. dla dowolnie podstawionych wartości
logicznych jeżeli formuła ma wartość 1 to jest to tautologia.
25. Czy przykładowo podana formuła jest tautologią rachunku kwantyfikatorów, odpowiedz
uzasadnij.
Jw. Tautologia rachunku kwantyfikatorów jest formułą zawsze prawdziwą niezależnie od treści zdań.
26. Tradycyjna teoria nazw. Pojęcie nazwy, zakres nazwy, treść nazwy, rodzaje nazw.
27. Prawa logiczne związane z kwadratem logicznym.
Najpierw schematy zdań kwadratu: (chociaż znacznie łatwiej to zobaczyć na obrazku)
Każde S jest P -SaP
Żadne S nie jest P -SeP
Niektóre S są P -SiP
Niektóre S nie są P -SoP
- SaP <-> ~(SoP)
- SeP <-> ~(SiP)
- SaP -> SiP
- SeP -> SoP
- SaP -> ~(SeP)
- ~(SiP) -> SoP
28. Pojęcie zbioru. Zasada abstrakcji. Działania na zbiorach i relacje między zbiorami.
29. Pojęcie relacji, rodzaje relacji, działania na relacjach.
- Pojęcie relacji  dowolny związek pomiędzy przedmiotami, dla każdej relzcji istnieje zbiór w którym
ta relacja jest określona.
Strona 4 z 7
Strona 5 z 7
- Rodzaje relacji
- równoważnościowe
- porządkujące
- jednoznaczne (funkcje)
30. Daj przykład relacji równocześnie symetrycznej i antysymetrycznej. Czy relacja o tej
własności musi być a.[zwrotna] czy b.[przeciwzwrotna]
Relacja taka musi być zwrotna.
Np. x jest w tym samym wieku co y, x ma tych samych rodziców co y
31. Czy relacja która jest równocześnie [przeciwzwrotna] i [przechodnia] może być
[symetryczna]?
Nie. Np.  jest większy od (xRy Ł yRz) (~xRx Ł ~yRx)
32. Podaj przykład relacji a.[zwrotnej i symetrycznej a nieprzechodniej] b.[zwrotnej,
przechodniej i niesymetrycznej] c.[symetrycznej, przechodniej i niezwrotnej]
Stawiam tezę, że relacje takie nie istnieją.
33. Podaj przykłady relacji quasi-porzadkującej zbiór
Relacja jest quasi-porządkująca jeżeli jest zwrotna i przechodnia.
34. Podaj przykład zbioru i relacji porządkującej ten zbiór a nie porządkującej go całkowicie.
Relacja częściowo porządkująca zbiór  asymetryczna i przechodnia
Np. w uniwersum ludzi, relacja starszeństwa porządkuje elementy dopóki dwa z nich nie są w tym
samym wieku.
35. Relacje równoważnościowe a podziały logiczne zbioru.
Każda relacja równoważnościowa wyznacza podział logiczny zbioru i każdy podział logiczny zbioru
określa relację równoważnościową.
36. Relacja równoliczności zbiorów.
Zbiory są równoliczne kiedy każdemu elementowi z jednego zbioru można przypisać dokładnie jeden
element zbioru drugiego. Wówczas mają po tyle samo elementów.
37. Twierdzenie Cantora.
W skrócie: Każdy zbiór ma moc mniejszą niż rodzina jego wszystkich podzbiorów, czyli jego zbiór
potęgowy wyrażany  2X. To twierdzenie dowodzi, że nie istnieje zbiór wszystkich zbiorów.
X Ł 2X , X ą 2X
38. Podaj definicję zbioru skończonego.
Zbiór o skończonej liczbie elementów i skończonej mocy.
39. Podaj definicję zbioru nieskończonego.
Zbiór o nieskończonej liczbie elementów i nieskończonej mocy.
40. Definicja zbioru przeliczalnego.
Zbiór przeliczalny to zbiór skończony lub równoliczny ze zbiorem N wszystkich liczb naturalnych.
Zbiór nieskończony A jest przeliczalny tylko jeżeli istnieje funkcja f przekształcająca zbiór N wszystkich
liczb naturalnych na zbiór A.
Zbiorem przeliczalnym jest też podzbiór zbioru przeliczalnego, suma dwóch lub dowolnej skończonej
ilości zbiorów przeliczalnych oraz produkt kartezjański dwóch zbiorów przeliczalnych.
Strona 5 z 7
Strona 6 z 7
41. Podaj przykład zbioru nieprzeliczalnego.
Zbiór liczb rzeczywistych, zbiór liczb niewymiernych, zbiór liczb przestępnych.
42. Podstawowe relacje pragmatyczne.
 Przez relacje pragmatyczne rozumie się relacje zachodzące między jakimikolwiek elementami
kontekstu użycia wyrażenia językowego a tym wyrażeniem lub dowolnym elementem jego treści. Na
przykład relacją pragmatyczną jest relacja zachodząca między chwilą czy też miejscem wypowiedzi a
zrozumieniem wypowiedzianych w danym czasie i miejscu słów.
Np. x uznaje zdanie a za prawdziwe
x wywnioskował zdanie b ze zdania a
z uzasadnił zdanie a
Do pragmatyki logicznej zalicza się uznawanie, uzasadnianie i wnioskowanie.
43. Uznawanie zdań a ich uzasadnienie.
Uznawać zdanie to tyle co być przekonanym o jego prawdziwości. Prawdziwość zdania jest
niestopniowalna, natomiast przekonanie człowieka co do prawdziwości zdania jest stopniowalna.
Uzasadnianie
- uzasadnienie bezpośrednie  uzasadniając nie odwołujemy się do innych zdań wcześniej uznanych
za prawdzie. Najważniejszymi metodami uzasadniania bezpośredniego są obserwacja i eksperyment
- zdania spostrzeżeniowe/obserwacyjne
- zdania uzasadnione na podstawie doświadczenia zewnętrznego (np. termometr wskazuje
0 stopni C.
- zdania uzasadnione na podstawie doświadczenia wewnętrznego (np. jest mi zimno)
- uzasadnienie pośrednie  uzasadniając odwołujemy się do innych zdań wcześniej uznanych za
przwdziwe. Odwołujemy się zarówno do zdań obserwacyjnych jak i uznanych.
44. Różnice i cechy wnioskowań dedukcyjnego i redukcyjnego.
- dedukcyjne  wniosek wynika logicznie z przesłanek
- redukcyjne  uprawdopodobniające, z wniosku wynikają przesłanki (np. lekarz wnioskuje
redukcyjnie)
45. Jaka jest różnica pomiędzy dowodzeniem a sprawdzaniem.
Zasadniczo dowód musi się opierać albo na udowodnionych uprzednio twierdzeniach albo na
aksjomatach. Sprawdzanie zaś dowodu odbywa się wprost, poprzez zaprzeczenie lub metodą
apagogiczną  poprzez sprowadzenie do niedorzeczności (ad absurdum). W szczególnym przypadku
można sprawdzić dowód apostatyczne  poprzez odrzucenie.
46. Rodzaje rozumowań indukcyjnych
Wnioskowanie indukcyjne  wyciąganie wniosków ogólnych na podstawie przesłanek szczegółowych.
Dzieli się na:
- wyczerpujące  wyciągnięte na podstawie wszystkich przesłanek szczegółowych w zbiorze
- niewyczerpujące  wyciągnięte na podstawie części przesłanek szczegółowych
- matematyczne  poprzedzone dużym kwantyfikatorem (dla każdego)
47. Cele definicji. Błędy definicji sprawozdawczych.
Cele:
- wyjaśnianie poprawnego rozumienia terminu w danym języku
- uściślanie terminów już używanych, aby były bardziej przydatne
- wzbogacanie zastanego języka o nowe terminy niespotkanych dotąd przedmiotów etc. lub
zastępujących długie sformułowania
Strona 6 z 7
Strona 7 z 7
Błędy:
- ignotum per ignotum  definiowanie przez niezrozumiałe
- idem per idem  definiowanie tego samego przez to samo
- definicja perswazyjna  definicja narzucająca pogląd, stronnicza
- definicja za szeroka  obejmuje więcej niż pojęcie definiowane
- definicja za wąska  nie mieści w sobie całego pojęcia defioniowanego
- błąd przesunięcia kategorialnego  np. czerń to rzecz czarna
(mogą występować równocześnie, np. definicja może być jednocześnie za szeroka i za wąska)
48. Definicje ostensywne i definicje przez postulaty.
Definicje te służą wyjaśnianiu terminów, które w matematyce nazywane są  terminami pierwotnymi
i są niemożliwe do klasycznego zdefiniowania.
- Definicje przez postulaty wyjaśniają poprzez aksjomaty. Terminy pierwotne danej teorii muszą być
tak rozumiane, aby aksjomaty były prawdziwe. (niezbyt poprawny przykład  1<2<3 , termin  < musi
być rozumiany tak, aby wyrażenie było prawdziwe.)
- Definicje ostenstywne (inaczej deiktyczne) definiują termin poprzez wskazanie przedmiotu
będącego desygnatem nazwy (wzorce mogą być pozytywne i negatywne). Może temu towarzyszyć
wyjaśnienie.
49. Jak uzasadniamy twierdzenia?
Udowodnić zdanie Z to znalezć takie zdania Z1,Z2,& Zn, które są prawdziwe i z których według
logicznego schematu wnioskowania wynika zdanie Z.
50. Czemu definicje przez postulaty i definicje ostensywne nie są definicjami w ścisłym
znaczeniu tego słowa?
Obie te metody nie są definicjami, ponieważ nie podają równoznaczników terminów definiowanych.
51. Podstawowe błędy wnioskowań.
- błąd materialny  któraś z przesłanek jest fałszywa
- petite principii  tzw. bezpodstawność przesłanek, kiedy przesłanki nie są należycie uzasadnione
- błąd ekwiwokacji  gdy w rozumowaniu używa się homonimu (wyrażenie wieloznaczne) w różnych
znaczeniach mylnie sądząc, że używa się go w jednym.
- błąd czterech terminów  szczególny przypadek ekwiwokacji, w wnioskowaniu z trzech terminów
polega on na ty, że termin średni jest użyty w dwu różnych znaczeniach  stąd tytułowe 4 terminy.
- niedookreślenie struktury składniowej - amfibolia
Opracowane na podstawie
- Helena Rasiowa, Wstęp do matematyki współczesnej
- Mieczysław Omyła, Logika wybrane zagadnienia
- Mieczysław Omyła, Zarys Logiki
- Mieczysław Omyła, Wybrane zagadnienia z logiki
- Józef Wajszczyk, Wprowadzenie w podstawowe zagadnienia logiki (Recenzował Mieczysław Omyła)
- Barbara Stanosz, Wprowadzenie do logiki formalnej
Jeżeli pojawia się treść mojego własnego wnioskowania lub inna, nie zaczerpnięta z powyższych
zródeł, to jest zaznaczona kursywą.
Wiem, że wyszło tego dużo. Niemniej jednak jest to najbardziej skrótowe ujęcie na jakie mogłem sobie
pozwolić bez utraty najważniejszych wiadomości. Mam nadzieję, że powyższe opracowanie
przypadnie wam do gustu. Pytania które nie mają jeszcze odpowiedzi dzielą się na takie, których nie
potrafię zrobić i takie których jeszcze nie zrobiłem. Wszystkie te, z którymi mam trudności
wyszczególniłem na facebook u mając nadzieję na waszą pomoc. Będę z nimi walczył ale nie obiecuję,
że wygram. Te zaś, o których nie napisałem na FB pojawią się tu w najbliższym czasie.
Zachęcam do konstruktywnej krytyki. ; )
Strona 7 z 7


Wyszukiwarka

Podobne podstrony:
zagadnienia do egzaminu z logiki
Zagadnienia do egzaminu z logiki 3 5
Zagadnienia do egzaminu z logiki 3 3
Zagadnienia do egzaminu z biochemii 2012
Zagadnienia do egzaminu z kultury języka
57 Zagadnienia do egzaminu
mechanika plynow zagadnienia do egzaminu
Zagadnienia do egzaminu
Zagadnienia do egzaminu Fizyka 2
Zagadnienia do egzaminu z Etnografii regionalnej
00 0 ZAGADNIENIA DO EGZAMINU Z DYDAKTYKI (licencjat)
Ekonomia Rozwoju Garbicz Opracowanie zagadnień do egzaminu
Zakres zagadnień do egzaminu
Zagadnienia do egzaminu z literatury
zl zagadnienia do egzaminu
ZAGADNIENIA DO EGZAMINU Z PROFILAKTYKI opracowanie
zagadnienia do egzaminu
Psychologia rozwoju człowieka zagadnienia do egzaminu
Zagadnienia do egzaminu z Psychologii sądowej (2009)

więcej podobnych podstron