algebra i analizy gis


Algebra mapy
i analizy rastrowe
Szymon Ciupa
Jerzy Kisiel
IV MSGP
Co to jest informacja przestrzenna?
Informacja o położeniu,
geometrycznych właściwościach i
przestrzennych relacjach obiektów,
które mogą być identyfikowane w
odniesieniu do Ziemi.
Przez obiekty przestrzenne można
rozumieć obiekty naturalne i
sztuczne związane z powierzchnią
Ziemi oraz różne zjawiska
(przyrodnicze, społeczne,
ekonomiczne), które mogą być
rozpatrywane w odniesieniu do niej
Co to są Systemy Informacji Przestrzennej (GIS) ?
System pozyskiwania, przetwarzania i Obiekty zarejestrowane i
udostępniania danych, w których zawarte analizowane w systemach mają
są informacje przestrzenne oraz określone położenie (w przestrzeni
towarzyszące im informacje opisowe 2 lub 3 wymiarowej) oraz
zdefiniowany rodzaj i zakres
informacji opisowych
Dodatkowym wymiarem,
niezbędnym do oceny
zmienności obiektów, jest czas
Co tworzy GIS?
GIS
Przykłady zastosowań GIS
GIS to środek do podejmowania decyzji o charakterze
prawnym, administracyjnym i gospodarczym oraz pomoc
w planowaniu i rozwoju
Może (powinien?) być wykorzystywany w wielu
dziedzinach życia
Przykłady zastosowań GIS
Urzędy Gmin korzystając z wdrożonego GIS mogą m.in. monitorować sprawy
związane z poborem i rodzajem podatków, przypisanym do przestrzeni.
Miejski Zarząd Wodociągów
bardzo sprawnie może załagodzić
skutki awarii w systemie
wodociągowym. Wiedząc w jakim
miejscu nastąpił przeciek, wie
które zawory zamknąć, potrafi
szybko oszacować koszty naprawy
Dodatkowo natychmiast wie ile
ludzi zostało odciętych od wody.
Przykłady zastosowań GIS
Przeciętny obywatel, osoba nie
zajmująca się profesjonalnie GIS a
umiejąca posługiwać się Internetem, może
bez problemu je wykorzystywać przy
pomocy formy prezentacji danych
przestrzennych jaką są Geoportale.
Narzędzia te mogą dostarczyć wszelkiej
informacji na przykład o gminie :
prawnej, turystycznej, ekonomicznej
(łącznie z ofertą inwestycyjną). Dzięki
temu każdy odwiedzający portal ma
możliwość wirtualnego poruszania się po
terenie gminy, zorientowania się np. w
przepisach prawa miejscowego
dotyczących dowolnie wskazanej
yródło: www.geoportal.pl
lokalizacji (miejscowy plan
zagospodarowania przestrzennego
Plan
1. Modele danych przestrzennych
2. Model rastrowy
3. Algebra mapy
4. Analizy rastrowe
5. Podsumowanie
Modele danych przestrzennych
Dane przestrzenne są reprezentowane za
pomocą modeli:
" Model wektorowy
" Model rastrowy
" TIN * (w niektórych zródłach)
Model wektorowy
Rzeczywistość opisana za pomocą
punktów, linii i poligonów o określonych
współrzędnych
Model rastrowy
W modelu rastrowym rzeczywistość reprezentowana jest jako
powierzchnia podzielona na regularną siatkę komórek
TIN (Triangulated Irregular Network)
Uznawany w niektórych zródłach jako oddzielny
model danych, w niektóre zródła podają że należy
do modelu wektorowego.
Wektor vs Raster
X,Y X,Y
X,Y
X,Y
Definicja rastra
Uporządkowany zbiór komórek, które pokrywają część powierzchni, np. rastrem
jest sieć kwadratów pokrywających część płaszczyzny i utworzonych przez dwie
rodziny linii równoległych, równoodległych i wzajemnie prostopadłych; punkty
przecięć tych linii tworzą węzły rastra, a zbiór tych węzłów nazywany jest gridem;
www.ptip.org.pl
Rastry
Dane tematyczne Dane obrazowe
(GRID) (IMAGE)
GRID
Komórki GRID-a porządkowane są w równoległe rzędy i kolumny w kartezjańskim
układzie współrzędnych względem osi x i y. Każdej komórce przypisany jest
unikatowy adres.
Każdej komórce przydzielona jest specyficzna wartość identyfikująca lub
opisująca klasę czy kategorię, do których należą zjawiska w niej zapisane.
Przypisana wartość może również reprezentować rozmiar, odległość lub
wzajemne relacje pomiędzy komórkami (dla powierzchni ciągłych).
Każde dwie lub więcej komórek o tej samej wartości przynależą do tej samej
strefy. Strefa zawierać komórki połączone, niepołączone lub też połączone i
niepołączone jednocześnie. Strefy zawierające komórki połączone opisują zwykle
pojedyncze zjawiska powierzchniowe.
GRID
Cell size
Number
of
rows
NODATA cell
(X,Y)
Number of Columns
GRID
Każda grupa połączonych komórek w strefie tworzy region. Strefy zawierające
jedną grupę połączonych komórek zawierają jeden region. Strefy mogą
składać się z wielu regionów.
Grid posiada wbudowane tabele wartości atrybutów VAT (Value Attribute
Table), w których przechowywane są atrybuty zdefiniowanych zbiorów
wartości GRID-a. Kazdej unikatowej wartości przypisanej komórce modelu
odpowiada jeden rekord w tablicy VAT. Dla każdej komórki na pierwszym
miejscu w tablicy zapisana jest wartość, która reprezentuje przynależność
danej komórki do strefy. Na drugim miejscu zapisana jest pełna liczba
komórek należących do danej strefy. Obie pozycje stanowią wymagany
zapis w tablicy.
Każdy grid reprezentuje jedną  warstwę tematyczną, zatem przedstawienie w
pełni cech analizowane powierzchni czy zjawiska następuje poprzez
utworzenie co najmniej kilku modeli wraz z bazą danych.
GRID
Powstaje w wyniku zastosowania procesu
interpolacji (poszukiwania wartości
pośrednich w zbiorze danych), w
którym konieczny jest wybór metody
interpolacji oraz właściwe zadanie
określonych parametrów interpolacji.
Przy wyborze metody bardzo istotnymi
czynnikami wpływającymi na
poprawne wygenerowanie modelu, a w
konsekwencji wyników analiz, są:
" Liczba punktów
" Przestrzenny rozkład punktów na
powierzchni
" Wszelkie dodatkowo występujące
uwarunkowania związane ze
zjawiskiem podlegającym
opracowaniu.
Interpolacja
Jest niezbędna kiedy mamy do czynienia z takimi wartościami jak ilość opadów,
koncentracja i rozprzestrzenianie się emisji, różnice w wysokości terenu  jest
niemożliwym, aby zmierzyć te zjawiska w każdym punkcie terenu. Jesteśmy
zmuszeni do opracowywania wyników pomiarów robionych punktowo na terenie
badanego obszaru. Na ich podstawie szacuje się przy pomocy określonych metod i
narzędzi rozkład zjawiska na całym terenie.
Celem interpolacji jest przeprowadzenie analiz w sposób który możliwie dokładnie
zobrazuje dane zjawisko w przestrzeni.
Interpolacja to proces szacowania nieznanej wartości znajdujących się
między znanymi wartościami. Obiekty które są rozmieszczone w przestrzeni
są ze sobą skorelowane.
Interpolacja
METODA ODWROTNYCH ODLEGAOŚCI (IDW) dosłownie wykorzystuje
zasady przestrzennej autokorelacji. Zakłada sięże największy wpływ na wartość
szacowanej komórki mają punkty znajdujące się najbliżej.
Interpolacja
SPLINE to metoda, która  dopasowuje elastyczną powierzchnię do punktów o
znanych wartościach. Jest to dobra metoda do interpolowania rejonów
znajdujących się poza badaną próbą danych (poniżej lub powyżej).
Interpolacja
KRIGING jest jedną z bardziej kompleksowych i potężnych metod interpolacji.
Obejmuje zaawansowane metody statystyczne które uwzględniają unikalne cechy
danych.
Dystans i kierunek każdej pary punktowej jest kwantyfikowany do dostarczania
informacji na podstawie przestrzennej autokorelacji z badanego układu punktów.
ALGEBRA MAPY
Co to jest algebra mapy?
Koncepcja algebry mapy jako języka anliz została opracowana przez Dr Dana
Tomlina ( Geographic Information Systems and Cartographic Modeling , 1990)
To zaawansowany obliczeniowy język używany do przeprowadzania analiz
przestrzennych przy wykorzystaniu danych rastrowych.
Zastosowanie zasad algebry do danych rastrowych jest możliwe ponieważ te mogą
być traktowane jako macierze liczbowe.
Operatory algebry mapy są generalnie
podobne jak w kalkulatorze.
" Arytmetyczne
" Relacyjne
" Boolean
" Logiczne
" Kombinacyjne
" *bitwise
Jak działa algebra mapy?
Wykorzystuje oparte na matematyce wyrażenia, które zawierają operatory i
funkcje związane z danymi rastrowymi.
Wyróżnia się operatory relacyjne, Booleana, logiczne, kombinacyjne oraz
 bitwise pracujące z jednym rodzajem danych wejściowych lub wieloma w celu
stworzenia nowych wartości. Dodatkowo istnieją funkcje umożliwiające
wykonywanie specjalistycznych analiz t.j. generowanie obrazu przedstawiającego
nachylenie zboczy analizowanego terenu z jego wartości wysokości  zwykle
zwracają wartości numeryczne.
Jak działa algebra mapy?
Może być wykorzystywana do przeprowadzania ogromnej ilości operacji i kalkulacji
matematycznych. UWAGA!!! Nie wszystkie wyniki przeprowadzanych działań będą
miały sens! (otrzymany wynik nie będzie adekwatny do rzeczywistości)
Grid1 * Grid2 = Grid3
Przykład:
Można stworzyć grid, gdzie woda będzie
miała wartość 0, a grunty 1. Mnożymy to
przez grida z sytuacją wysokościową.
0
W warstwie wynikowej w miejscu
występowania wody otrzymamy wartość 0 -
logiczna wartość FAASZ
(x * 0 = 0) w momencie gdy na mapie
wysokości istnieją wartości w miejscu gdzie
zlokalizowana jest woda.
Grid3
0
NoData
Wartość  NoData jest jedyną nie
zerową wartością, która nie jest
interpretowana jako logiczna PRAWDA.
Ta specyficzna wartość wskazuje że z
daną komórką nie jest związana żadna
informacja.
Wyrażenia Algebry Mapy zwracają
wartość  NoData dla komórki jeśli
którakolwiek z odpowiadających jej
komórek z danych wejściowych była
określona jako  NoData .
NoData
" W kilku przypadkach NoData zostanie zwrócona jeśli warunki wejściowe ocenione
zostana jako fałsz. Np. funkcja CON zwróci NoData jeśli do fałszywego argumentu
nie zostanie przypisana wartość.
" Większość funkcji i wyrażeń ignoruje komórki określone jako NoData, sprawiając
trudnym testowanie wartości NoData lub jej przypisywania. Funkcje ISNULL oraz
SETNULL umożliwiają przeprowadzanie tych operacji.
" Funkcja ISNULL bada określoną komórkę sprawdzając czy zawiera wartość
NoData i zwraca  1 lub  0 (prawda/fałsz). Zwykle używana przy funkcji CON do
zastąpienia wartości NoData inną.
" Funkcja SETNULL przeprowadza testy w stosunku do określonej komórki. Jeśli
wynik testu okaże się logiczną PRAWD zostanie zwrócona wartość NoData.
Jeżeli wynikiem testu będzie FAASZ zostanie zwrócony wynik testu.
Jak działa algebra mapy?
Operatory arytmetyczne
Umożliwiają dodawanie, odejmowanie, mnożenie, dzielenie.
Np.: Mając do dyspozycji trzy rastry obrazujące różny stopień zagrożenia
pożarowego, można poprzez dodanie, stworzyć warstwę obrazująca ogólne
zagrożenie.
Mogą być też wykorzystywane do konwertowania wartości  np. Przy zmienianiu
jednostek ze stóp na metry mnożąc każdą komórkę x2.
1 2
1 2
x 2
x 2
3 4
3 4
2 4
=
=
6 8
Operatory relacyjne
Pozwalają na budowanie testów logicznych, zwracających wartość w przypadku
PRAWDY (1) oraz FAASZU (0).
Np. tego typu operatory mogą być wykorzystywane do znajdywania określonego
typu roślinności (np.las iglasty).
Operatory relacyjne (=,<,>) mogą być
wymienni wykorzystywane ze skrótami
(EQ, LT, GT)
1 2
EQ 4
3 4
0 0
=
0 1
Operatory Booleana
Są to operatory typy  AND ,  OR ,  XOR and  NOT pozwalają na łączenie w
serie testów logicznych.
Tak jak operatory relacyjne  operatory Booleana zwracają wartości logiczne
PRAWDA lub FAASZ.
Np. Aby znalezć wszystkie spadki terenu których wartość jest  większa od 45
stopni  i których wysokość jest  większa niż 5000 metrów.
Slope
Elevation
65 21
5500 6500
AND
55 46
7500 4000
1 0
=
1 0
Operatory Booleana
AND
OR
Operatory Booleana
XOR
Operatory logiczne
DIFF, IN oraz OVER pozwalają na
budowanie analiz  komórka po komórce , ale
są wprowadzane według określonych reguł:
" A DIFF B : jeżeli wartości komórkowe w
rastrze A i rastrze B są różne  zwracane są
wartości z rastra A. Jeżeli wartości będą
równe zwracana jest wartość zero.
" A IN {lista wartości): Jeśli wartość w
rastrze A znajduje się w liście wartości 
zwracana jest wartość z rastra A. W innym
przypadku zwracana jest  NO DATA
" A OVER B: Jeżeli wartość w rastrze A nie
są równe zero  zostają zwrócone wartości z
tego rastra. W przeciwnym razie zostaną
zwrócone wartości z rastra B.
Wartości logiczne
Wartości logiczne opisują wartości
PRAWDA / FAASZ.
W algebrze mapy każda wartość która
nie jest zerem jest postrzegana jako
logiczna wartość  PRAWDA , a wartości
które są równe zero sa postrzegane jako
logiczny  FAASZ .
Niektóre operatory i funkcje algebry
mapy szacując wartości komórek
zwracają logiczną wartość  1 (prawda),
oraz logiczną wartość  0 (fałsz).
(Wartości logiczne są zwracane przez
operatory relacyjne i Booleana)
W tym przypadku komórki rastra są przeliczane w ten
sposób, że logiczna wartość 1 jest przypisywana do
komórek, których wartość jest większa od 15. Wartość
0 jest przypisywana do pozostałych.
Operatory kombinacyjne
Zestawiają atrybuty wielu rastrów wejściowych.
Znajdują unikalne kombinacje wartości przypisując każdej ID, a potem zwracając w
wyjściowym gridzie. Wyjściowa tabela atrybutów wartości grida będzie zawierać
pola ze wszystkich gridów wejściowych.
Operator CAND
Funkcje algebry mapy
Określają w jaki sposób elementy danych wejściowych (obiektów) mają być
przetwarzane numerycznie.
Istnieje ponad sto funkcji mapy algebry.
Termin  funkcje może brzmieć jak język programistów, ale z dużym
prawdopodobieństwem większość z nas ich używała  np. generując cieniowanie
zboczy, spadki i ich kierunki używając funkcji dostępnych w menu Surface Analyst.
ww. zadania są prostymi do wykonania operacjami w których zastosowano
założenia algebry mapy np. kalkulacje spadków terenu. (większość funkcji ze
Spatial Analyst jest dostępna jako funkcje algebry mapy).
Typy funkcji:
" LocalFUNCTION
" FocalFUNCTION
" ZonalFUNCTION
" GlobalFUNCTION
Funkcje algebry mapy
LocalFUNCTION
" Argumentem jest jedna lub więcej warstw informacyjnych oraz wartości stałe
" Wynikiem funkcji jest warstwa informacyjna (wartość elementu rastra=
odpowiadająca wartość elementu rastra + operacja arytmetyczna)
" Funkcje lokalne mogą operować na pojedynczej lub wielu wartościach 
warstwach informacyjnych.
Składnia:
WARSTWAWYN= LocalFunction of WARSTWA 1 [and WARSTWANAST]
Określona
Pierwsza Kolejna
Warstwa
funkcja
warstwa Warstwa
wynikowa
zródłowa zrodłowa
FocalFUNCTION
Wynikiem funkcji jest określenie wartości warstwy wyjściowej (WARSTWAWYN)
na podstawie badania sąsiedztwa (uwzględniając lokalizację- odległość i kierunek)
elementów warstwy WARSTWA1.
warstwa zródłowa,
Ze względu na zakres analizy można podzielnic te funkcje na :
której elementy
" bezpośredniego sąsiedztwa (matryca 3x3)
mają być
" rozszerzonego sąsiedztwa
modelowane
Składnia:
WARSTWAWYN= FocalFUNCTION of WARSTWA1
warstwa
[at ODLEGLOSC] etc. [by WKIERUNKU] etc.
wynikowa
[spreading [in WARSTWATAR]
[on WARSTWAPOW]
liczbowa wartość lub warstwa azymut kierunku
określająca obszar gdzie wyznaczonego
[trough WARSTWASIEĆ]]
wszystkie elementy będą poarametrem
[radiating [on WARSTWAPOW]
traktowane jak sąsiednie  ODLEGLOSC
[from WARSTWAEMIS]
[trough WARSTWACIENI]
wagowanie elementów warstwy zródłowej
[to WARSTWAWID]]
Ograniczenie obszaru analizy do miejsc  widocznych bądz  niewidocznych z punktu centralnego
FocalFUNCTION
ZonalFUNCTION
Wyznaczenie wartości elementu warstwy wynikowej na podstawie wartości
elementów wypadających w ramach określonych stref.
SKAADNIA:
WARSTWAWYN = ZonalFUNCTION of WARSTWA1 [within WARSTWA2]
warstwa
wynikowa
warstwa zródłowa której Warstwa
elementy mają być definiując
analizowane a strefy
GlobalFUNCTION
W wyniku działania tej funkcji wartość każdego elementu warstwy wynikowej jest
wyznaczana ze wszystkich elementów warstwy zródłowej.
SKAADNIA:
WARSTWAWYN = GlobalFUNCTION of WARSTWA1
Warstwa zródłowa, której elementy
Warstwa
mają być analizowane
wynikowa
GlobalFUNCTION
Przykłady funkcji:
" ASPECT: identifies the direction of maximum rate of change in z value from each cell.
" BOUNDARYCLEAN: smoothes the boundary between zones by expanding and shrinking the boundary.
" CON: performs one or more conditional if/else evaluations.
" EQUALTO: evaluates, on a cell-by-cell basis, the number of times in an argument list that the input grid
values are equal to the value specified by the first argument.
" GREATERTHAN: evaluates, on a cell-by-cell basis, the number of times in an argument list that the input
grid values are greater than the value specified by the first argument.
" HILLSHADE: creates a shaded relief grid from a grid by considering the sun illumination angle and
shadows.
" INT: converts input floating-point values to integer values through truncation.
" ISNULL: returns  1 if the input value is NODATA, and  0 if it is not.
" LESSTHAN: evaluates, on a cell-by-cell basis, the number of times in an argument list that the input grid
values are less than the value specified by the first argument.
" MEAN: uses multiple input grids to determine the mean value on a cell-by-cell basis.
" MERGE: merges multiple, possibly non-adjacent input grids into a single grid based upon order of input.
" MOSAIC: merges multiple adjacent continuous grids and performs interpolation in the overlapping areas.
" NIBBLE: replaces areas in a grid corresponding to a mask, with the values of the nearest neighbors.
" REGIONGROUP: records for each cell in the output the identity of the connected region to which it belongs.
A unique number is assigned to each region.
" SETNULL: returns NODATA if the evaluation of the input condition is  TRUE ; if it  FALSE , returns the value
specified by the second input argument.
" SLICE:  slices (or changes) a range of values of the input cells by specified ranges, zones of equal area, or
zones with equal intervals.
" SLOPE: identifies the rate of maximum change in z value from each cell.
" ZONALAREA: calculates the area of each zone in the input grid.
Składnia algebry mapy (syntax)
" Nazwa funkcji (Input Grid, Parameters)
HillShade(, {azimuth}, {altitude}, {ALL
| SHADE | SHADOW}, {z_factor})
Default Azimuth  315, Altitude  45
HillShade (Elevation, 275, 70,ALL,1)
HillShade (Elevation,#,#,#,2)
Uses Default values for # parameters
Składnia algebry mapy (syntax)
" Outgrid = grid1 + grid2
" Outgrid = grid1 * 2
" Outgrid = sin(grid1)
" Outgrid = costallocation(sourcegrid,
costgrid, accumgrid, backgrid)
" Outgrid = con(>5 (ingrid1),0,ingrid1)
" Outgrid = select(grid1,  VALUE = 10 )
DOCELL
if (ingrid1 > 5 & ingrid < 50) outgrid = 500
else if (ingrid1 == 50) outgrid = 700
else if (ingrid1 > 50 & ingrid < 100) outgrid = 800
else outgrid = 1000
END
Składnia algebry mapy (syntax)
Składnia algebry mapy (syntax)
Składnia algebry mapy (syntax)
Przetwarzanie warunkowe
Umożliwia specyfikacje  które z
procesów zostaną wykonane w
zależności od warunków.
Należy ustalić warunek, który będzie
zwracany jako logiczna PRAWDA,
dopiero wtedy będzie mogła nastąpić
określona operacja, w innym przypadku
zostanie wykonana operacja właściwa
logicznemu FAASZOWI  np. NoData.
Przetwarzanie warunkowe jest
szczególnie użyteczne przy tworzeniu
analizy maskowej w celu
wyeliminowania niepożądanych danych.
Składnia przetwarzania warunkowego
Con(, ,
 JEŻELI komórka znajduje się w dorzeczu I wartość jej wysokości jest mniejsza
lub równa 790 metrów, TO zostanie zwrócona wartość 790, W PRZECIWNYM
WYPADKU komórka zostanie wykluczona z analizy (NoData) .
Analiza maskowa
 maskowanie polega na wyłączaniu z analizy komórek które są zbędne w
przeprowadzaniu analiz. (ograniczenie badanego obszaru)
Maskowanie może być wykorzystywane do izolowania obszarów wg
charakterystyk atrybutów (np. eliminacja wszystkich elementów których wartość
określonego atrybutu jest inna niż 25); lub bazuje na przestrzennych
charakterystykach (np.. Eliminacja wszystkich elementów znajdujących się poza
określoną granicą)
wartość
NoData
1
0
(prawda)
(fałsz)
Porównanie dwóch gridów
Konieczność doprowadzenia obu rastrów do tej samej wielkości (rozmiarów matrycy).
(Tabulate Aeria)
1990 2000 Cross Tabulated Grid
A B B A A B
AA BA BB
B B C B C C
BB BC CC
B A C A A B
BA AA CB
Porównywanie  komórka po komórce rastrów obrazujących dany teren.
1990 Data
A B C
2 2 0
A
2000 Data
0 2 1
B
0 1 1
C
Porównanie dwóch gridów
1990
A B C
Procentowy udział komórek które nie
2 2 0 4
A
zmieniły swojej wartości:
0 2 1 3
B
2000
0 1 1 2
C
2 5 2 5
(2 + 2 + 1) / (2 + 2 + 0 +0 + 2 + 1 + 0 +
1+1) = 5/9 = 55% zgodności
Zmiana nastąpiła w 45% komórkach rastra z 2000r.
Porównanie dwóch gridów
Jedną z najprostszych operacji jest określenie czy dwa gridy są  równe
tzn. obrazują ten sam obszar  nie należy rozumieć tego jako równości odnoszącej
się do wymiarów matrycy, dlatego różne wielkości komórek nie oznaczają
automatycznie że gridy są  nierówne . Ich porównanie jest możliwe.
1.3 m
1.6 m
Porównanie dwóch gridów
Jeśli chcemy porównywać grid niebieski i żółty należy najpierw przygotować
odpowiednią interpolację niebieskich wartości do środka każdej z żółtych
komórek. RESAMPLING
Nearest-neighbor interpolation
Bilinear interpolation
Cubic convolution (or bicubic interpolation)
ANALIZY PRZESTRZENNE
Analizy rastrowe
Co to jest analiza?
 myślowe, pojęciowe wyodrębnienie cech, części lub składników badanego
zjawiska lub przedmiotu; badanie cech elementów lub struktury czegoś
oraz zachodzących między nimi związków
Słownik Języka Polskiego PWN
Co to jest analiza przestrzenna?
Jest analiza danych przestrzennych mająca na celu ujawnienie lub
uzyskanie nowej informacji przestrzennej, zwłaszcza geograficznej.
Analiza przestrzenna umożliwia modelowanie złożonych zjawisk, relacji
i procesów geograficznych, służąc ich monitorowaniu i prognozowaniu.
www.ptip.org.pl
Analizy rastrowe
Powierzchni
Odległości i gęstości
Contour
Statystyki
Straight line distance, direction,
Slope
Komórek
allocation
Aspect
Sąsiedztwa
Cost weighted distance,
Hillshade
Stref
direction, allocation
Viewshed
Least-cost path
Density surfaces
Analizy powierzchni
(Surface analysis)
Dają możliwość uzyskania dodatkowej
informacji o terenie poprzez wyróżnienie
określonych zjawisk na podstawie danych
wejściowych
Tworzenie izolinii (contours)
Izolinia - linia na mapie lub wykresie łącząca punkty
o jednakowych wartościach elementu czy wskaznika lub
natężenia bądz czasu występowania zjawiska; np. izobara,
izohipsa, izoklina
Rozkład izolinii pokazuje jak zmienia się badane zjawisko
na powierzchni.
contour([tin-grid], interval, 5)
Nachylenie (slope)
Funkcja nachylenia liczy maksymalną zmianę pomiędzy
poszczególnymi komórkami
Nachylenie jest miarą stromości powierzchni i może być
wyrażone w stopniach i w procentach.
Slope([ingrid])
Nachylenie (slope)
Stopień nachylenia = ą
B
Nachylenie (%) = "100
A
taną =
A
B
B
Stopień nachylenia = 30
ą
Nachylenie (%) = 58
A
Nachylenie (slope) - zastosowanie
" Topografia
" Hydrologia
" Mapy nachylenie są wykorzystywane w badaniu erozji czy w
projektowaniu infrastruktury
Funkcja nachylenia ma również zastosowanie w przypadku innych
danych ciągłych (nie tylko przedstawiających wysokość terenu nad
poziomem morza) np.:
" kiedy  nachylenie jest liczone na podstawie danych
przedstawiających rozkład opadu deszczu na danym terenie,
pokazuje tereny, gdzie opad się zmienił i jak szybko to nastąpiło
Ekspozycja terenu (aspect)
Poziomy kąt zawarty pomiędzy kierunkiem
północy, a kierunkiem spadku terenu
Ekspozycja terenu (aspect)
Komórki grida, przedstawiącego wystawę przyjmują wartości od 0 
360 (płaskie tereny mają wartość -1). Wartości są przypisane
kierunkom geograficznym
Ekspozycja terenu (aspect) - zastosowanie
Rejony, gdzie
Wskazanie Miejsca, gdzie śnieg
najszybciej dotrze
południowych zboczy stopnieje najszybciej
woda roztopowa
Najlepsze miejsca
wegetowania
niektórych roślin
Wskazanie Miejsca najbardziej
południowych zboczy nasłonecznione
Miejsca najchętniej
wybierane na
lokalizację domów
Wskazanie Miejsca, gdzie Najlepsze miejsca na
północnych zboczy najdłużej zalega śnieg nartostrady
Cieniowanie zboczy (Hillshade)
Funkcja  cieniowania zboczy generuje  powierzchnię nasłonecznienia .
Komórki rastra otrzymują wartości od 0 do 255 na podstawie:
" azymutu (kąt poziomy wyznaczony w punkcie obserwacji i zawarty między
kierunkiem północy a kierunkiem punktu celu, liczony od północy w prawo)
" wysokości słońca nad horyzonetm (kąta padania promieni słonecznych)
W algebrze mapy: hillshade(ingrid, 315, 45, ALL, 1)
Cieniowanie zboczy (Hillshade)
Wykorzystanie przy graficznym przedstawianiu zjawisk
Cieniowanie zboczy (Hillshade)
Wykorzystanie w analizach przestrzennych
Poprzez modelowanie cieniem można określić te komórki rastra, które będą
znajdowały się w cieniu innych komórek o konkretnej porze dnia. Taka analiza jest
bardzo przydatna przy lokalizowaniu paneli słonecznych. Identyfikując, które strefy
rastra są najlepiej i najdłużej oświetlone w ciągu dnia wybieramy najlepszą
lokalizację.
Kąt padania promieni Kąt padania promieni
słonecznych = 45 stopni słonecznych = 60 stopni
Funkcje widoczności (Viewshed)
" Funkcja widoczności określa komórki rastra  wejściowego , które są
widoczne z jednego lub wielu punktów obserwacyjnych.
" Każda komórka w rastrze wyjściowym otrzymuje wartość, która
wskazuje ile punktów obserwacyjnych jest widocznych z tego
miejsca.
Funkcje widoczności (Viewshed) - zastosowanie
Funkcja ta jest bardzo przydatna, wtedy gdy chce się wiedzieć jak bardzo
widoczne są (lub będą) elementy przestrzeni albo jaki widok będzie rozciągał
się z projektowanego elementu przestrzeni.
Visibility(, , {POINT |
LINE}, {FREQUENCY | OBSERVERS})
Zielone komórki są
Model rzezby terenu w
widoczne, czerwone nie.
okolicy punktu obserwacji
Związek pomiędzy rzezbą
terenu, a widocznością
Analizy odległości
Analizy odległości
(raster distance functions)
Analizy odległości należą do funkcji globalnych. Funkcje te obliczają dane
wyjściowe w taki sposób, że wynikowa wartość każdego miejsca jest funkcją
wszystkich komórek wejściowych rastrów.
raster distance functions
Analiza odległości w oparciu o koszty
Mierzące dystans w linii prostej
" Straight Line Distance " Cost Weighted Disatance
" Cost Weighted Allocation
" Straight Line Alloaction
" Cost Weighted Direction
" Straight Line Direction
Analiza najkrótszej (najtańszej) drogi
(shortest [least-cost] path)
Analiza odległości w linii prostej
Straight Line Distance
(Analiza odległości w linii prostej)
Wynikiem tej analizy jest otrzymanie odległości każdej komórki w rastrze do
najbliższego zródła. Odległości mierzone są od środka komórki do środka
zródła. Analiza ta pozwala na szybkie znalezienie np. najbliższego szpitala.
Odległość do jednego zródła Odległość do najbliższego zródła
Straight Line Allocation
" Analiza ta przydziela poszczególnym komórkom
wartość najbliższego  zródła . Najbliższe żródło
określane jest metodą analizy odległości w linii
prostej.
" Funkcja ta pozwala przydzielić określony teren
obiektom np. określenie terenu obsługiwanego przez
poszczególny sklep.
Straight Line Direction
" Analiza ta wskazuje azymut poszczególnej komórki
względem najbliższego zródła
" Informacja taka, może być użyteczna dla pilota
helikoptera pogotowia kiedy transportuje rannego do
najbliższego szpitala
Analizy  Straight Line Distance
Punkty wejściowe
Schemat funkcjonowania
Analiza odległości w oparciu
o koszty  przebycia drogi
Analiza  Cost weighted distance
Najkrótsza trasa pod względem odległości nie zawsze jest najlepsza&
Przy pomocy tej analizy obliczany jest skumulowany koszt  przebycia drogi z
każdej komórki do najbliższego  najtańszego zródła. Kosztem może być czas,
pieniądze czy upodobania.
Funkcje te opierają się nie na odległościach pomiędzy punktami w terenie, a na
koszcie  podróżowania przez daną komórkę.
Analiza ta jest przydatna zawsze wtedy kiedy na ruch (lub np. na koszt inwestycji)
mają wpływ wskazniki przestrzenne (geograficzne, finansowe, techniczne& )
Cost weighted distance
Analiza odległości w oparciu o koszty wymaga obecności dwóch podstawowych
składników:
"  yródła czyli np. miejsca rozpoczęcia budowy rurociągu
" Powierzchni rozkładu kosztów
Powierzchnia rozkładu kosztów
Powierzchnia rozkładu kosztów reprezentuje wskaznik lub kombinację wskazników,
które wpływają na przemieszczanie się przez badany teren. Określa koszt
 podróżowania przez każdą komórkę rastra.
Przykład wskazników kosztów (przy budowie drogi):
" stromość terenu
" sposób użytkowania terenu
" nośność gruntu
" ceny gruntów
Powierzchnia rozkładu kosztów
Nachylenie zboczy (wyrażone w % lub w stopniach) samo
w sobie nie wskazuje czy koszt  podróżowania jest wysoki czy niski.
Aby odzwierciedlić koszty  wygenerować powierzchnię rozkładu
kosztów  należy przekształcić wartości nachylenia
w wartości kosztów (wyrażone przy pomocy skali lub np. waluty)
1  koszt niski, 9  koszt wysoki
Powierzchnia rozkładu kosztów
" Badany obszar może mieć wygenerowanych bardzo wiele powierzchni
kosztów  każdą dla jednego wskaznika.
" Niektóre wskazniki wpływają na ostateczne koszty bardziej niż inne. Przed
wygenerowaniem ostatecznej powierzchni rozkładu kosztów należy określić
wpływ procentowy poszczególnych wskazników np. oceniamy, że wskaznik
kosztu nachylenia wpływa w 66 %, a kosztu głębokości śniegu w 34% na
koszt całkowity.
Nachylenie
Głębokość śniegu
Analizy powierzchni rozkładu kosztów
Cost weighted distance
Używając powierzchni rozkładu kosztów i  zródła
analiza ta generuje raster, w którym każda komórka
ma przydzieloną wartość, która określa najmniejszy
skumulowany koszt powrotu do zródła.
Cost weighted direction
Każda komórka ma przypisany kod, który wskazuje kierunek do
następnej  najtańszej komórki.
Cost weighted allocation
Kształt i rozmiar poszczególnych wydzieleń powierzchni jest
określany przez  koszt przebycia drogi z komórek
znajdujących się wewnątrz poszczególnego wydzielenia do
najbliższego zródła.
Analiza najtańszej drogi
(least-cost path analysis)
Analizy najtańszej drogi wykorzystują powierzchnie  cost distance oraz
 cost direction , aby określić najefektywniejszą drogę pomiędzy  zródłem
a  przeznaczeniem .
Ścieżka może
biec ortogonalnie
i diagonalnie
Jedno zródło 
wiele punktów
przeznaczenia
Analizy gęstości
Analizy Gęstości (Density)
Analizy gęstości pozwalają na wygenerowanie ciągłych powierzchni
gęstości z danych wejściowych (najczęściej punktowych). Wykorzystując je
można w sposób łatwiejszy do interpretacji przedstawić wartości.
Obliczając gęstość rozciąga się wartości zjawisk występujących punktowo
ponad powierzchnie.
Dane wejściowe są dystrybuowane na całym obszarze i wartość gęstości
jest liczona dla wszystkich komórek generowanego rastra.
Powierzchnie gęstości dobrze przedstawiają zjawiska, które są
skoncentrowane
Dane ze spisu powszechnego ludności zostały
przedstawione za pomocą punktów. Poprzez
obliczenie gęstości zaludnienia generuje się
powierzchnia pokazująca przewidywany
rozkład ludności na danym obszarze.
Analizy Gęstości (Density)
Gęstość zjawiska można obliczyć używając dwóch metod:
" Prostej (simple density calculation) - wykorzystuje się kolisty
obszar badań lub strefę sąsiedztwa; wartość komórki oblicza się
dzieląc liczbę zjawisk występujących wewnątrz strefy przez
powierzchnię strefy. Wartość każdej komórki
w strefie obliczana jest w ten sam sposób.
"  Kernel (kernel density calculation)
 obszar badań to koło o środku w
badanym punkcie, dla tego obszaru
rozkład gęstości przyjmuje wartość 1 w
środku i wartości 0 na brzegu.
Analizy Gęstości (Density)
Wykorzystanie atrybutów do obliczania gęstości
Gdy warstwy punktowe zawierają dane o populacji lub liczbie występowania zjawiska w
danym miejscu można obliczyć gęstość występowanie tego zjawiska (np. gęstość zaludnienia
na km2.
Obszar badań to koło o środku w danym punkcie, dla tego obszaru rozkład gęstości przyjmuje
wartość atrybutu w środku i wartość 0 na brzegu.
Przykład zastosowania
Pochodzenie wirusów komputerowych
Statystyki
" komórek
" sąsiedztwa
" stref
Statystyki
Statystyki komórek
Funkcje lokalne, gdzie wartość każdej komórki w
rastrze wynikowym jest funkcją wartości komórki
w rastrze wejściowym.
Statystyki sąsiedztwa
Funkcje sąsiedztwa (focal functions) gdzie
wartość każdej komórki w rastrze wynikowym
jest funkcją wartości określonej strefy
sąsiedztwa w rastrze wejściowym.
Statystyki stref
Statystyki wyliczane dla poszczególnych stref
(w bazie danych), bazujące na wartościach z
innej bazy danych
Statystyki
Przykłady funkcji:
Majority: określa wartość, która występuje najczęściej
Maximum: określa wartość maksymalną
Mean: określa wartość średnią dla występujących wartości
Median: określa wartość mediany
Minimum: określa wartość minimalną
Minority: określa wartośc, któe występują najrzadziej
Range: określa zasięg występujących wartości
Standard Deviation: oblicza odchylenie standardowe dla
występujących wartości
Sum: oblicza sumę występujących wartości
Variety: określa różnorodność występujących wartości
Pamiętajmy, że dane same w sobie
nie są wiele warte.
Prawdziwą wartość posiada
informacja.
Analizy przestrzenne są ich
ogromnym zródłem.
Znajomość zasad algebry mapy
pozwala na pełne wykorzystanie
możliwości analiz przestrzennych.
Bibliografia
" Liwtin L., Myrda G., 2005, Systemy Informacji Geograficznej.
Zarządzanie danymi przestrzennymi w GIS, Helion
" Magnuszewski A., 1999, GIS w geografii fizycznej, PWN
" Tomlin Dana, 1990, Geographic Information Systems and Cartographic
Modeling, Prentice Hall
" McCoy J., Johnston K., 2001, Using ArcGIS Spatial Analyst, ESRI Press
" Childs C., 2004, ArcUser, Interpolating Surfaces in ArcGIS Spatial
Analyst, s. 32-35
" Amos P., 2005, GIS Labs, Burlington County College
" www.ncgia.ucsb.edu/education/curricula/cctp/units
" www.esri.com/software/arcgis/extensions/spatialanalyst
" www.richlandmaps.com/training/glossary
Dziękujemy za uwagę!
s_ciupa@o2.pl
jerzykisiel@o2.pl


Wyszukiwarka

Podobne podstrony:
Podstawy algebry i analizy tensorowej
Analiza Matematyczna 2 Zadania
analiza
ANALIZA KOMPUTEROWA SYSTEMÓW POMIAROWYCH — MSE
Analiza stat ścianki szczelnej
Analiza 1
Analiza?N Ocena dzialan na rzecz?zpieczenstwa energetycznego dostawy gazu listopad 09
Analizowanie działania układów mikroprocesorowych
Analiza samobójstw w materiale sekcyjnym Zakładu Medycyny Sądowej AMB w latach 1990 2003
Analiza ekonomiczna spółki Centrum Klima S A
roprm ćwiczenie 6 PROGRAMOWANIE ROBOTA Z UWZGLĘDNIENIEM ANALIZY OBRAZU ARLANG
Finanse Finanse zakładów ubezpieczeń Analiza sytuacji ekonom finansowa (50 str )
analiza algorytmow
ANALIZA GRAFOLOGICZNA(1)

więcej podobnych podstron