New Laplace Transform Table


ENGS 22  Systems
Laplace Transform Table
Largely modeled on a table in D Azzo and Houpis, Linear Control Systems Analysis and Design, 1988
F (s) 0 d" t
f (t)
1. 1 ´ (t)
unit impulse at t = 0
1
u(t)
1 or unit step starting at t = 0
2.
s
1
t Å"u(t)
or t ramp function
3.
2
s
1
1
n-1
t
n = positive integer
4.
(n -1)!
sn
1 u (t - a )
unit step starting at t = a
e-as
5.
s
u(t)-u(t -a)
rectangular pulse
1
(1-e-as)
6.
s
1
e-at
exponential decay
7.
s + a
1 1
n-1
t e-at
8.
n = positive integer
(s + a)n
(n -1)!
1
1
9. (1- e-at )
s(s + a)
a
1 1 b a
(1- e-at + e-bt)
10.
ab b-a b-a
s(s + a)(s +b)
s + Ä…
1 b(Ä… - a) a(Ä… -b)
[Ä… - e-at + e-bt ]
11.
s(s + a)(s + b)
ab b - a b - a
1 1
(e-at - e-bt )
12.
(s + a)(s +b)
b - a
1
s
(ae-at - be-bt )
13.
a - b
(s + a)(s + b)
Laplace Table Page 1
ENGS 22  Systems
0 d" t
F(s) f(t)
s + Ä…
1
[(Ä… - a)e-at - (Ä… - b)e-bt ]
14.
(s + a)(s + b)
b - a
1
e-at e-bt e-ct
+ +
15.
(s + a)(s + b)(s + c) (b-a)(c -a) (c -b)(a -b) (a -c)(b-c)
s +Ä…
(Ä… -a)e-at (Ä… -b)e-bt (Ä… -c)e-ct
+ +
16.
(s + a)(s + b)(s + c) (b-a)(c -a) (c -b)(a -b) (a -c)(b-c)
sin É t
É
17.
s2 +É2
cos É t
s
18.
s2 +É2
2
s + Ä…
Ä… +É2
19.
2 2
sin(Ét +Ć)
Ć = atan2(É,Ä…)
s + É
É
s sin¸ + É cos¸
sin(Ét + ¸ )
20. 2
s2 + É
1 1
(1- cosÉt)
21.
2 2 2
s(s + É ) É
2 2
s + Ä…
Ä… Ä… + É
22. - cos(Ét + Ć )
2 2 Ć = atan2(É,Ä…)
2 2
s ( s + É )
É É
1
e-at 1
+ sin(Ét - Ć)
23. 2
2
a2 + É
(s + a)(s2 +É2)
É a2 + É
Ć = atan2(É,Ä…)
1 1
e-at sin(bt)
24.
b
(s + a)2 + b2
1
1
2
n
e-Å›É t sin(Én 1-Å› t)
24a.
2
s + 2Å›É s + Én 2 2
n
Én 1-Å›
- at
s + a
e cos( bt )
25.
2 2
(s + a ) + b
Laplace Table Page 2
ENGS 22  Systems
F(s)
0 d" t
f(t)
2 2
s + Ä…
(Ä… - a) + b
- at
e sin( bt + Ć )
26.
Ć = atan2( -a)
b,Ä…
(s + a)2 + b2
b
26a.
2
Ä…
( -Å›Én)
Én
2
s+Ä…
n
+1 Å" e-Å›É t sin(Én 1-Å› t +Ć)
2
1-Å›
s2 +2Å›Éns+Én2
2
Ć = atan2( 1-Å› ,Ä… -Å›Én)
Én
27.
1 1
+ e-at sin(bt-Ć)
Ć = atan2(b,-a)
1
a2 +b2 b a2 +b2
s[(s +a)2 +b2]
27a.
1 1
2
n
- e-Å›É t sin(Én 1-Å› t +Ć)
1
Én2 Én2 1-Å› 2
s(s2 +2Å›Éns +Én2 Ć = cos -1 Å›
28.
Ä… 1 (Ä… - a)2 +b2
+ e-at sin(bt +Ć)
s +Ä…
b
a2 +b2 a2 +b2
s[(s + a)2 +b2]
Ć = atan2( b,ą - a) - atan2( b,-a)
28a.
Ä… 1 Ä…
2 2
n
+ ( -Å›)2 +(1-Å› ) Å"e-Å›É t sin( 1-Å› t +Ć)
Én
s+Ä…
Én
Én2 Én 1-Å› 2
s(s2 +2Å›Éns+Én2)
2 2
Ć = atan2(Én 1-Å› ,Ä… -ÉnÅ› ) - atan2( 1-Å› ,-Å› )
29.
e-ct e-at sin(bt -Ć)
+
1
(c - a)2 + b2 b (c - a)2 + b2 Ć = atan2(b,c - a)
(s +c)[(s +a)2 +b2]
Laplace Table Page 3
ENGS 22  Systems
F(s) 0 d" 1
f(t)
30.
1 e-ct e-at sin(bt -Ć)
- +
1
c(a2 +b2) c[(c - a)2 +b2]
b a2 +b2 (c - a)2 +b2
s(s+c)[(s+a)2 +b2]
Ć = atan2(b,-a) +atan2(b,c -a)
31.
Ä… (c -Ä…)e-ct
+
s +Ä…
c(a2 + b2) c[(c - a)2 + b2]
s(s +c)[(s +a)2 +b2]
(Ä… - a)2 + b2
+ e-at sin(bt +Ć)
b a2 + b2 (c - a)2 + b2
Ć = atan2( -a)-atan2( -atan2( -a)
b,Ä… b,-a) b,c
1 1
(at-1+e-at)
2
32.
s (s + a) a2
1
1
(1-e-at -ate-at)
33.
a2
s(s+a)2
1
s +Ä…
[Ä… -Ä…e-at +a(a-Ä…)te-at]
34.
a2
s(s +a)2
s2 +Ä…1s +Ä…0 Ä…0 a2 -Ä…1a+Ä…0 b2 -Ä…1b+Ä…0
+ e-at - e-bt
35.
s(s + a)(s +b) ab a(a-b) b(a-b)
Ä…0
1
s2 +Ä…1s +Ä…0
+ [(a2 -b2 -Ä…1a +Ä…0)2
36.
c2 bc
s[(s + a)2 + b2]
1
+b2(ą1 - 2a)2]2 e-at sin(bt +Ć)
Ć = atan2[b(ą1 - 2a), a2 - b2 - ą1a + ą0 ] - atan2(b,-a)
c2 =a2 +b2
Laplace Table Page 4
ENGS 22  Systems
F(s)
0 d" 1
f(t)
37.
(1/É)sin(Ét + Ć1) + (1/ b)e-at sin(bt + Ć2 )
1 1
2 2
[4a2É + (a2 + b2 - É )2 ]2
(s2 +É2)[(s+a)2 +b2]
Ć1 =atan2(
-2aÉ,a2 +b2 -É2)
Ć2 = atan2(2ab,a2 -b2 +É2)
38.
1 Ä…2 +É2 1
( )2 sin(Ét +Ć1)
s+Ä…
É c
(s2 +É2)[(s+a)2 +b2]
1 (Ä… -a)2 +b2 1
+ [ ]2e-at sin(
bt+Ć2)
b c
c =(2aÉ)2 +(a2 +b2 -É2)2
2
Ć1 = atan2(É,Ä… ) - atan2(2aÉ,a2 + b2 + É )
Ć2 = atan2(b,Ä… - a) + atan2(2ab,a2 - b2 -É2)
1
s+Ä…
1 2Ä…a [b2 + (Ä… - a)2 ]2
(ąt + 1 - ) + e-at sin(bt + Ć)
39.
s2[(s+a)2 +b2]
c c bc
c = a2 +b2
Ć =2atan2(,a) +atan2(,ą -a)
b b
Ä…1 +Ä…0t Ä…0(a+b)
1 Ä…1 Ä…0
s2 +Ä…1s +Ä…0
- - (1- + )e-at
40.
ab (ab)2 a-b a a2
s2(s +a)(s +b)
1 Ä…1 Ä…0
- (1- + )e-bt
b-a b b2
Laplace Table Page 5


Wyszukiwarka

Podobne podstrony:
Laplace Transforms and Inverse Laplace Transforms
Tablice transformat Laplace a
Transformaty Laplace a
wzory transformata Laplacea
Transformata Laplace a
Transformaty Laplace a
jurlewicz,rachunek prawdopodobieństwa,transformata Laplace a zadania
tl2 transfrormata laplacea
1 1 2 Transformata Laplaca
Deriving a New Hash Table Type
transformacja Laplace a
Laplace Table
wyklad4 transformata Laplace a

więcej podobnych podstron