34
Hartowanie - jest zabiegiem cieplnym, któremu poddawana jest stal, składającym się z dwóch bezpośrednio po sobie następujących faz. Pierwsza faza to nagrzewanie do temperatury powyżej przemiany austenitycznej (dla stali węglowej 723°C) (zwykle 30°C do 50°C powyżej temperatury przemiany austenitycznej) i wygrzewanie, tak długo jak to potrzebne, by nastąpiła ona w całej objętości hartowanego obiektu. Drugą fazą jest szybkie schładzanie. Szybkość schładzania musi być taka, by z austenitu nie zdążył wydzielić się cementyt i jego struktura została zachowana do temperatury przemiany martenzytycznej, w której to austenit przemienia się w fazę zwaną martenzytem. Stal posiadająca strukturę martenzytyczną nazywana jest stalą martenzytyczna lub hartowaną. Hartowanie przeprowadza się, by podnieść twardość i wytrzymałość stali.
Przy hartowaniu niezwykle istotnym jest dobór szybkości schładzania. Zbyt wolne schładzanie powoduje wydzielanie się cementytu i uniemożliwia przemianę martenzytyczną, podczas gdy zbyt szybkie chłodzenie powoduje powstanie zbyt dużych naprężeń hartowniczych, które mogą doprowadzić do trwałych odkształceń hartowanego elementu lub jego pęknięć.
Szybkość schładzania wpływa także na głębokość hartowania. Przy elementach o większych rozmiarach, których grubość przekracza maksymalną głębokość hartowania, tylko część objętości przedmiotu hartowanego zostanie zahartowana. W takiej sytuacji martenzyt powstanie w warstwach powierzchniowych. Im głębiej zaś, tym udział martenzytu maleje, a cementytu wzrasta. Bardzo często jest to zjawisko pożądane, wtedy, gdy element ma być twardy na powierzchni, a ciągliwy w swym rdzeniu. Głębokość hartowania zależy także od hartowności stali.
Wykres procesów hartowania: A - zwykłe, B - stopniowe, C - z przemianą izotermiczną
Hartowanie zwykłe
Polega na nagrzaniu przedmiotu hartowanego, a następnie szybkiemu schłodzeniu w kąpieli chłodzącej, zwykle wodnej lub olejowej, poniżej temperatury początku przemiany martenzytycznej, aż do temperatury otoczenia. Szybkość chłodzenia powinna być dobrana tak, by nie nastąpiły odkształcenia hartownicze. Chłodzenie w wodzie jest bardziej intensywne, niż w oleju.
Hartowanie stopniowe
Polega na nagrzaniu przedmiotu hartowanego, a następnie szybkiemu schłodzeniu w kąpieli chłodzącej, zwykle ze stopionej saletry, do temperatury nieco powyżej temperatury przemiany martenzytycznej i przetrzymaniu w tej temperaturze, by nastąpiło wyrównanie temperatur w całym przekroju przedmiotu. W drugiej fazie, już w kąpieli wodnej lub olejowej, następuje dalsze schładzanie, w celu uzyskania przemiany martenzytycznej. Zaletą tej metody jest uniknięcie naprężeń hartowniczych. Wymaga jednak dużej wprawy przy określaniu czasu kąpieli pośredniej.
Hartowanie izotermiczne
Jest hartowaniem, w którym nie zachodzi przemiana martenzytyczna. Nagrzany przedmiot utrzymuje się w kąpieli z roztopionej saletry lub ołowiu, w temperaturze powyżej początku przemiany martenzytycznej. Nazwa metody pochodzi od faktu, iż kąpiel zachowuje stałą temperaturę. W hartowaniu tego typu nie powstaje martenzyt, lecz następuje rozpad austenitu na inne fazy, np. bainit, dając stali własności podobne jak po hartowaniu z odpuszczaniem. Zaletą metody jest brak naprężeń hartowniczych, lecz jest ona procesem długotrwałym, niekiedy przeciągającym się do kilku godzin.
Hartowanie powierzchniowe
metoda, w której, nie nagrzewa się całego przedmiotu (hartowanie na wskroś) lecz tylko powierzchnie przedmiotu. W związku z tym tylko warstwa powierzchniowa podlega hartowaniu. Stosowane wszędzie tam, gdzie wymagane jest utwardzenie tylko fragmentów powierzchni przedmiotu. Istnieje kilka metod hartowania powierzchniowego.
Hartowanie płomieniowe - Powierzchnia przedmiotu lub jej fragment nagrzewana jest płomieniem palnika, a następnie schładzana silnym strumieniem wody.
Hartowanie indukcyjne - Przedmiot przeciągany jest przez cewkę, otaczającą go (możliwie najciaśniej). Prądy wirowe, powstałe w przedmiocie, powodują efekt powierzchniowy, w którym, wskutek oporności materiału, zamieniają się na ciepło. Mimo konieczności budowy skomplikowanych stanowisk hartowniczych, metoda ta zyskuje na popularności, ze względu na możliwość kontrolowania temperatury oraz głębokości nagrzewania.
Hartowanie kąpielowe - Polega na zanurzeniu przedmiotu w kąpieli saletrowej lub ołowiowej i przetrzymaniu w niej na krótką chwilę. Temperatura kąpieli musi być na tyle wysoka, by w jej czasie powierzchnia przedmiotu podniosła się ponad temperaturę przemiany austenitycznej.
Martenzyt - forma stopu żelaza i węgla powstała przez rozpad austenitu przy jego szybkim schładzaniu, tak by nie było czasu na jego naturalną przemianę na ferryt i cementyt. Temperatura początku i końca przemiany martenzytycznej w dużym stopniu zależy od zawartości węgla w stopie.
Wykres temperatury początku (linia czerwona)
i końca (linia niebieska) przemiany martenzytycznej
w zależności od zawartości węgla.
Martenzyt ma strukturę drobnoziarnistą. Ziarna mają kształt igieł przecinających się pod kątem około 60°. Martenzyt jest fazą bardzo twardą i kruchą. Martenzyt powstaje w czasie hartowania stali.
Odpuszczanie - jest zabiegiem cieplnym, któremu poddawana jest stal wcześniej zahartowana. Celem odpuszczania jest usunięcie naprężeń hartowniczych oraz zmiana własności fizycznych zahartowanej stali, a przede wszystkim zmniejszenie twardości, a podniesienie udarności zahartowanej stali.
Odpuszczanie polega na rozgrzaniu zahartowanego wcześniej przedmiotu do temperatury w granicach 150° do 650°C, przetrzymywaniu w tej temperaturze przez pewien czas, a następnie schłodzeniu. W czasie odpuszczania całość lub część martenzytu zawartego w zahartowanej stali rozpada się, wydzielając bardzo drobne ziarna cementytu, tworząc fazę zwaną sorbitem lub troostytem.
Rodzaje odpuszczania ze względu na temperaturę:
Odpuszczanie niskie
Przeprowadza się je w temperaturach w granicach 150° do 250°C. Celem jego jest usuniecie naprężeń hartowniczych, przy zachowaniu w strukturze wysokiego udziału martenzytu, a przez to zachowanie wysokiej twardości. Stosuje się przy narzędziach.
Odpuszczanie średnie
Przeprowadza się je w temperaturach w granicach 250° do 500°C. Stosowane w celu uzyskania wysokiej wytrzymałości i sprężystości przy znacznym obniżeniu twardości. Stosowane przy obróbce sprężyn, resorów, części mechanizmów pracujących na uderzenie np. młoty, części broni maszynowej, części samochodowych itp.
Odpuszczanie wysokie
Przeprowadza się je w temperaturach powyżej 500°C w celu uzyskania wysokiej wytrzymałości przy niskiej twardości. Stal odpuszczana wysoko nadaje się do obróbki skrawaniem.
Podczas odpuszczania występuje kruchość odpuszczania, którą dzielimy na:
kruchość odpuszczania I rodzaju i jest to kruchość nieodwracalna, zachodzi w zakresie temperatur 250-450°C, powoduje zmniejszenie odporności na pękanie
kruchość odpuszczania II rodzaju i jest kruchościa odwracalną, zachodzi powyżej 500°C i powolnym chłodzeniu
32
Uspokajanie stali - końcowy proces wytopu stali, polegający na odtlenianiu w celu zmniejszenia wydzielania gazów podczas krzepnięcia we wlewnicy. Stal uspokojona jest odtleniona w taki sposób, by podczas krzepnięcia proces wydzielania gazów był całkowicie wyeliminowany. Proces ten polega na dodaniu w końcowej fazie żelazo-krzemu, aluminium, manganu i/lub siarki.
Stal nieuspokojona jest bardziej zanieczyszczona gazami i ma niejednolitą strukturę na skutek tego, że po wytopieniu jest od razu wylewana z kadzi do wlewnicy. Stal uspokojoną otrzymuje się przez odtlenianie wytopu za pomocą aluminium lub krzemu, które podtrzymują wysoka temperaturę i powodują
31
Stal - stop żelaza z węglem plastycznie obrobiony i plastycznie obrabialny o zawartości węgla nieprzekraczającej 2%. Węgiel w stali najczęściej występuje w postaci perlitu płytkowego. Niekiedy jednak, szczególnie przy większych zawartościach węgla cementyt występuje w postaci kulkowej w otoczeniu ziaren ferrytu.
Stal obok żelaza i węgla zawiera zwykle również inne składniki. Do pożądanych - składników stopowych - zalicza się głównie metale (chrom, nikiel, mangan, wolfram, miedź, molibden, tytan). Pierwiastki takie jak tlen, azot, siarka oraz wtrącenia niemetaliczne, głównie tlenków siarki, fosforu, zwane są zanieczyszczeniami.
30
Tlen występuje w stali głównie w postaci związanej, najczęściej tlenków FeO, SiO2, Al2O3 i in. Tlen powoduje pogorszenie prawie wszystkich własności mechanicznych i dlatego dąży się przez odpowiednie prowadzenie procesu metalurgicznego do obniżenia jego zawartości w stali. Odtlenianie stali przeprowadza się za pomocą stopów krzemu, manganu i aluminium. Sposób odtleniania wywiera także duży wpływ na wielkość ziarna stali węglowej. Stale odtleniane żelazomanganem wykazują skłonności do intensywnego rozrostu ziarn przy nagrzaniu już nieco powyżej temperatury A. W przeciwieństwie do tego stale odtlenione aluminium, a także żelazokrzemem. wykazują wyraźny wzrost ziarn dopiero w temperaturze 150-200°C powyżej Ac3, co praktycznie wystarczy, aby przeciwdziałać zjawisku przegrzania stali.
Nawęglanie w proszku
Jest metodą najbardziej rozpowszechnioną, gdyż jest ona stosunkowo łatwa i nie wymaga specjalnych urządzeń. Nawęglanie przeprowadza się w piecach komorowych elektrycznych lub gazowych do których wstawia się skrzynki stalowe, wypełnione częściami obrabianymi obsypanymi proszkiem nawęglającym.
Proces przeprowadza się przy temperaturze 900-930°C. Czas nawęglania wynosi 4-12 godz. w zależności od zalanej grubości nawęglonej. Typowy proszek nawęglający jest domieszką 80% węgla drzewnego + 10% Na2CO3 + 10% BaCO3. Bar i sód dodaje się celem zaktywizowania procesu, gdyż węgiel drzewny nawęgla zbyt powoli. W czasie procesu zachodzą następujące zasadnicze reakcje:
rozkład węgla na: BaCO3 = BaO + CO2 lub Na2CO3 = Na2O + CO2
utlenianie węgla: C + O2 = CO2
powstały CO2 reaguje z nadmiarem węgla: CO2 + C = 2CO
Reakcja ta jest silnie endotermiczna, więc przy wysokich temperaturach przebiega z lewej strony w prawo, dodając tlenek węgla który w zetknięciu się z żelazem, działającym katalitycznie ulega rozkładowi 2CO = CO2 + C
Przy czym powstały węgiel "in statu nascendi " rozpuszcza się w austenicie, wzbogacając go w węgiel.
\