Sprawozdanie z przedmiotu: Silniki spalinowe
Dobór turbosprężarki do silnika spalinowego o zapłonie samoczynnym 4CT90
Wykonał: Wojciech Darowski
Gr: P1
Dane:
Ndoł= 75 [kW]
pdoł= 2 [bar]
Wzór | Wynik | Jednostka |
---|---|---|
$$S_{\text{td}} = \frac{N_{d}}{N_{e}} = \frac{p_{\text{ed}}}{p_{e}}$$ |
1,15 | [-] |
N |
23,5 | [kW] |
$$\pi_{s} = \frac{p_{d}}{p_{1}}$$ |
2 | [-] |
$$\varphi_{d} = \frac{\rho_{2}}{\rho_{1}} = \frac{p_{2}}{p_{1}} \bullet \frac{T_{1}}{T_{2}} = \pi_{s} \bullet \frac{1}{1 + \frac{1}{\eta_{iz - s}} \bullet \left( {\pi_{s}}^{\frac{k - 1}{k}} - 1 \right)}$$ |
1,50 | [-] |
$\frac{T_{2}}{T_{1}} = \frac{p_{2}}{p_{1}} \bullet \frac{\rho_{1}}{\rho_{2}} = \frac{1}{\varphi_{d}} \bullet \pi_{s}$ | 1,33 | [-] |
$$L_{t}^{'} = \frac{100}{23} \bullet \left( \frac{8}{3} \bullet c + 8 \bullet h + s - o \right)$$ |
14,413 | $\mathbf{\lbrack}\frac{\mathbf{\text{kg\ powietrza}}}{\mathbf{\text{kg\ paliwa}}}\mathbf{\rbrack}$ |
$$\Gamma = \frac{3600 \bullet {\dot{\text{\ m}}}_{s}\ }{N_{d}} = \lambda_{c} \bullet g_{e} \bullet L_{t}^{'} \bullet 10^{- 3\ }$$ |
7,23 | $$\left\lbrack \frac{\mathbf{\text{kg}}}{\mathbf{kW \bullet h}} \right\rbrack$$ |
$$\rho_{\text{ot}} = \frac{p_{\text{ot}} \bullet \mu_{p}}{\mu \bullet R \bullet T_{\text{ot}}}\ $$ |
1,184 | $$\left\lbrack \frac{\mathbf{\text{kg}}}{\mathbf{m}^{\mathbf{3}}} \right\rbrack$$ |
$${\dot{m}}_{s} = \frac{\Gamma \bullet N_{d}}{3600}$$ |
0,1506 19,842 |
[lb/min] |
${\dot{V}}_{s} = \frac{\Gamma \bullet N_{d}}{\rho_{\text{ot}} \bullet 3600}\ \left\lbrack \frac{m^{3}}{s} \right\rbrack$ | 0,12 | $\left\lbrack \frac{\mathbf{m}^{\mathbf{3}}}{\mathbf{s}} \right\rbrack$ |
$T_{2} = T_{1} \bullet \frac{T_{2}}{T_{1}}$ | 396,34 | [K] |
Obliczenia sprężarki:
Dobieram turbosprężarkę – GT2056
Obliczenie turbiny
Przyjmuje ηcts=0, 67
Wzór | Wynik | Jednostka |
---|---|---|
$$\xi = \eta_{\text{cts}} \bullet \frac{T_{3}}{T_{1}} \bullet \frac{{\dot{m}}_{t}}{{\dot{m}}_{s}}$$ |
1,76 | [-] |
${\dot{m}}_{t}$=${\dot{m}}_{s}$ | 0,1506 | [kg/s] |
$$\pi_{t} = \frac{p_{3}}{p_{4}}$$ |
1,62 | [-] |
p4 |
105 | [kPa] |
p3 = πt • p4 |
170,1 | [kPa] |
T23 = T3 − T2 |
460 | [K] |
$$H_{ad - t} = \frac{k_{\text{sp}}}{k_{\text{sp}} - 1} \bullet R_{\text{sp}} \bullet T_{3} \bullet \left\lbrack 1 - \left( \frac{p_{4}}{p_{3}} \right)^{\frac{k_{\text{sp}} - 1}{k_{\text{sp}}}} \right\rbrack$$ |
97140,32 | [-] |
ksp |
1,34 | [-] |
Rsp |
288,3 | $$\left\lbrack \frac{\mathbf{J}}{\mathbf{kg \bullet K}} \right\rbrack$$ |
$$H_{ad - s} = \frac{k}{k - 1} \bullet R \bullet T_{1} \bullet \left\lbrack \left( \frac{p_{2}}{p_{1}} \right)^{\frac{k - 1}{k}} - 1 \right\rbrack$$ |
[-] | |
k |
1, 4 |
[-] |
R |
287 |
$$\left\lbrack \frac{\mathbf{J}}{\mathbf{kg \bullet K}} \right\rbrack$$ |
$$\eta_{\text{cts}} = \frac{H_{ad - s}}{H_{ad - t}}$$ |
0,67 | [-] |
Odczytane obroty turbosprężarki wynoszą:
nt = 140000 [obr/min]
dt=47 [mm]
Wzrór | Wynik | Jednostka |
---|---|---|
$$v = \frac{\pi \bullet d_{t} \bullet n_{t}}{60}$$ |
344,35 | $$\left\lbrack \frac{\mathbf{m}}{\mathbf{s}} \right\rbrack$$ |
$\psi_{t} = \frac{2 \bullet H_{ad - t}}{v_{t}^{2}}$ | 1,64 | [-] |
$$\frac{{\dot{m}}_{t} \bullet \sqrt{T_{3}}}{A_{t} \bullet p_{3}} = \sqrt{\frac{2 \bullet k_{\text{sp}}}{k_{\text{sp}} - 1} \bullet \frac{p_{3}}{R_{t}} \bullet \left\lbrack \left( \frac{p_{4}}{p_{3}} \right)^{\frac{2}{k_{\text{sp}}}} - \left( \frac{p_{4}}{p_{3}} \right)^{\frac{k_{\text{sp}} + 1}{k_{\text{sp}}}} \right\rbrack}$$ |
51,19 | [-] |