Obliczenie obciążeń stałych obliczeniowych na poziomie górnej powierzchni fundamentu. Współczynnik jednoczesności działania; podstawowe ψoi = 1, 0.
SCHEMAT I SCHEMAT II
Vd = VGk * γG |
---|
DA2=512 kN * 1, 35 = |
691, 2 kN |
Hdx = HGk, x * γG |
---|
DA2= − 34 kN * 1, 35 = |
−45, 9 kN |
Hdy = HGk, y * γG |
---|
DA2 =24 kN * 1, 35 = |
32, 4 kN |
Mdx = MGk, x * γG |
---|
DA2 =48 kN * 1, 35 = |
64, 8 kN |
Mdy = MGk, y * γG |
---|
DA2 =37 kN * 1, 35 = |
49, 95 kN |
Obliczenie obciążeń zmiennych obliczeniowych na poziomie górnej powierzchni fundamentu.
SCHEMAT I SCHEMAT II
Vd = VQk * γQ |
---|
DA2=57 kN * 1, 5 = |
85, 5 kN |
Hdx = HQk, x * γQ |
---|
DA2= − 10 kN * 1, 5 = |
−15 kN |
Hdy = HQk, y * γQ |
---|
DA2=16 kN * 1, 5 = |
24 kN |
Mdx = MQk, x * γQ |
---|
DA2=27 kN * 1, 5 = |
40, 5 kN |
Mdy = MQk, y * γQ |
---|
DA2=16 kN * 1, 5 = |
24 kN |
Obliczenie obliczeniowych obciążeń na poziomej górnej powierzchni fundamentu dla dwu schematów:
Współczynnik jednoczesności działania; podstawowe ψoi = 1, 0.
Współczynnik dla oddziaływań wyjątkowych γA = 1.
Ponieważ w naszym wypadku wszystkie obciążenia wyjątkowe są równe 0, obliczenia dla obciążeń stałych i zmiennych, będą równe obliczeniom dla obciążeń stałych, zmiennych i wyjątkowych.
SCHEMAT I SCHEMAT II
Vd = VGk * γG + VQk * γQ |
---|
DA2=512 kN * 1, 35 + 57 kN * 1, 5 = |
776, 7 kN |
Hdx = HGk, x * γG + HQk, x * γQ |
---|
DA2= − 34 kN * 1, 35 − 10 kN * 1, 5 = |
−60, 9 kN |
Hdy = HGk, y * γG + HQk, y * γQ |
---|
DA2 =24 kN * 1, 35 + 16 kN * 1, 5 = |
56, 4 kN |
Mdx = MGk, x * γG + MQk, x * γQ |
---|
DA2 =48 kN * 1, 35 + 27 kN * 1, 5 = |
105, 3 kN |
Mdy = MGk, y * γG + MQk, y * γQ |
---|
DA2 =37 kN * 1, 35 + 16 kN * 1, 5 = |
73, 95 kN |
Zestawienie powyższych obliczeń, prezentuje poniższa tabela:
WARIANT DA2 |
---|
Rodzaj obciążenia obliczeniowego |
Stałe |
Stałe i zmienne |
Stałe, zmienne i wyjątkowe |