$$sin \propto = \ \frac{Al + Bm + Cn}{\sqrt{A^{2} + B^{2} + C^{2}}\sqrt{l^{2} + m^{2} + n^{2}}}$$ |
$\left\{ \begin{matrix} x = X_{a} + t\left( X_{b} - X_{a} \right) \\ y = Y_{a} + t\left( Y_{b} - Y_{a} \right) \\ z = \ Z_{a} + t\left( Z_{b} - Z_{a} \right) \\ \end{matrix} \right.\ $ Parametryczne |
---|---|
$$cos = \ \mp \ \frac{l_{1}l_{2} + m_{1}m_{2} + n_{1}n_{2}}{\sqrt{l_{1}^{2} + m_{1}^{2} + n_{1}^{2}}\sqrt{l_{2}^{2} + m_{2}^{2} + n_{2}^{2}}}$$ |
$$\frac{x - x_{a}}{l} = \frac{y - y_{a}}{m} = \frac{z - z_{a}}{n} - (l,\ m,\ n\ wsp.\ wek.\ AB)$$ |
$$cos = \ \mp \ \frac{A_{1}A_{2} + B_{1}B_{2} + C_{1}C_{2}}{\sqrt{A_{1}^{2} + B_{1}^{2} + C_{1}^{2}}\sqrt{A_{2}^{2} + B_{2}^{2} + C_{2}^{2}}}$$ |
$\overrightarrow{a} \times \overrightarrow{b} = \left| \begin{matrix} i & j & k \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ \end{matrix} \right|$ Wektorowy iloczyn |
$$cos \propto = \ \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}\sqrt{b_{x}^{2} + b_{y}^{2} + b_{z}^{2}}}$$ |
Iloczyn skalarny |
Ax +By +Cz+D=0, A(x+ xo) +B(y+ yo) +C(z+ zo) =0 gdy wekt. Prostopadły ABC WSP. Wektora, xoyozo WSP punktu |
$$\frac{x - a_{1}}{b_{1} - a_{1}} = \frac{y - a_{2}}{b_{2} - a_{2}} = \frac{z - a_{3}}{b_{3} - a_{3}} - \left( a_{1}a_{2}a_{3}b_{1}b_{2}b_{3}\text{wsp.wek\ a\ i\ b} \right)$$ |
$\overrightarrow{\text{AB}}$ = [xb−xa, yb−ya, zb−za] = [x,y,z] | $\left| \overrightarrow{\text{AB}} \right|$=$\sqrt{x^{2} + y^{2} + z^{2}}$ |
$\left( \overrightarrow{a} \times \overrightarrow{b} \right)\overrightarrow{c} = \left| \begin{matrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ \end{matrix} \right| = \ c_{x}\left| \begin{matrix} a_{y} & a_{z} \\ b_{y} & b_{z} \\ \end{matrix} \right| - c_{y}\left| \begin{matrix} a_{x} & a_{z} \\ b_{x} & b_{z} \\ \end{matrix} \right| + c_{z}\left| \begin{matrix} a_{x} & a_{y} \\ b_{x} & b_{y} \\ \end{matrix} \right|$ Iloczyn mieszany |