Tor ruchu

Tor ruchu - krzywa zakreślana w przestrzeni przez poruszające się ciało położenie - wielkość fiz określająca umiejscowienie danego ciała w przestrzeni, jest określane względem wybranego układu współ r(t)=[x(t),y(t),z(t)] przemieszczenie - jest to wektor łączący położenie poczat. z końc. Δr(t)= r(t)-r(t0)= [Δx(t),Δy(t),Δz(t)] prędkość chwilowa –pochodna drogi względem czasu V(t)=dr(t)/dt droga i przemieszczenie- Δr(t)= fV(t’)dt’= ΣVi(t)Δti ,s(t)= fV(t’)dt’= ΣVi(t)Δti szybkość - V(t)=ds/dt wartość prędkości to szybkość, zmiana położenia ciała w jednostce czasu przyspieszenie – tempo zmiany prędkości as(t)=dv(t)/dt an(t)= pierw z a2(t)-as2(t) przyspieszenie chwilowe- 1pochodnaVwzględem t a=dv/dt prędkość średnia – V=x-x0/t kinematyczne równanie ruchu – dla r.jedn.prost. v=const. x,=x0+-vt

r.jedn.zmien.prost. a=const. v=v0+-at, x=x0+-vot+-at2/2 równ. toru dla rzutu poziom- y=H- gx2/2Vo2 rown ruchu dla ciała porusz się ze stała predk po okręgu – x(t)=rcos(φo+ ωt)y(t)=rsin(φo+ ωt), Vx=-rωsin(φo+ ωt), Vx=rωcos (φo+ ωt),ax=-xω2 ay=-yω2 lub a=- ω2r siła dośrod- siła powodująca zakrzywianie toru ruchu ciała, skier wzdłuż normalnej (prostop) do toru, w stronę środka jego krzywizny np. karuzela, wirówka F=mrω2= mv2/r siła odśrod- F=mrω2= mv2/r, Fods=m*v2/ r*r^ =mr ω2 jedna z sił bezwł wyst w obracających się układach odniesienia nieinercjalnych układ inercjalny- układ w którym spełnione sa zasady dyn newtona i nie istnieją siły pozorne, układ porusza się względem siebie r jedn prostol lub pozostaje w spoczynku, obowiązuje w nich zasada względności Galileusza przyspieszenie dosrodkowe – a=F/m=v2/r=- v2/r* r^= -rω2 pole grawitacyjne- F=-G*Mm/r3 =-G*Mm/r2*r^, Natężenie pola gr γ(r)=F/m=-G*M/r3*r=-G*M/r2*r^, Ep=-G*Mm/r, Ep=0 wiec potencjał pola graw v=Ep/m=-G*M/r I prędkość kosmiczna mv2/R=G*Mm/R2 to V1=pierw z G*M/R to najmn pozioma prędk, jaką należy nadać ciału wzgl przyciągając je ciała nieb, aby poruszało się po zamkniętej orbicie IIpredk kosm na pow ziemi: Ek+Ep=mv2/2-G*Mm/R na wys: Ek=Ep=0, Ek+Ep=const v2=pierw z 2G*M/R to pręd, jaką należy nadać obiekt, aby opuścił na zawsze dane ciało nieb poruszając się dalej ruchem swobodnym, czyli jest to prędkość, jaką trzeba nadać obiektowi na powierzchni tego ciała nieb aby tor jego ruchu stał się parabolą lub hiperbolą reguła przekory układ, na który działa jakiś bodziec, odpowiada w taki sposób aby przeciwdziałać bodźcowi. Reguła dotyczy układów w stanie równowagi, na które działa czynnik zewn Prawo Coulomba
2 ład punktowe przyciągają się lub odpy siłami, działającymi wzdłuż prostej łączącej te ładunki, których wartość jest ~ do iloczynu wartości tych ładunków a odwrotnie proporc do 2 odległ między nimi. F~q1*q2/r2

Prąd przesprąd elekt wywołany zmianą nat pola elek w dielektryku.

zasady dynamiki newtona (w ukł. Inercjalnym)– I jeżeli na ciało o stałej masie nie działa żadnasiła lub wypadkowa działających sil wynosi zero to ciało porusza się r jedn prostolin lub pozostaje w spoczynku ΣF=Fwyp=0 to dp/dt=0 to dv/dt=a=0toV=const =(zas zach pędu) II jeżeli na ciao o stałej masie m działa siłaF to nadaje ona ciału przysp a przy czym związek miedzy tymi wielkośc jest F=ma lub tepo zmiany pędu ciała = sile wyp działającej na to ciało F=dp/dt IIIgdy2ciala oddz na siebie to siła wywierana przez cialo2na1jest równa i przeciwnie skier do siły jaka cial1dziala na2(Fakcji=Freakcji)

zas zach pędu – wynika zIIzas dyn newtona F=ma=m*dv/dt= d(mv)/dt=dp/dt, dla układu ciał - ΣF=Fzew=0 to dp/dt=0to p=const zas Zach pędu dla ukl p materialnych-ΣF=Fwyp=0 to dp/dt=0to p=const,pcal=p1+p2+p3

dpcal/dt=dp1/dt+ dp2/dt+ dp3/dt, dp1/dt=F12+F13, dp2/dt=F21+F23, dp3/dt=F31+F32, dpcal/dt= ΣF=0, ΣFzewn=0 to pcal=const.

Środek masy ciała lub układu ciał jest punktem, w którym skupiona jest cała masa w opisie układu jako masy punkt Rsm=Σrimi/ Σmi= r1m1 + r2m2/m1 +m2 M= Σmi prędkość Sm – V=dRSm/dt =Σdr1/dt*mi/Σmi =Σv1mi /Σmi = Σp1 /Σmi=pcal/ Σmito p=MVSm moment pedu wzgl punkt O L=mr1*v1, L=mrv mIIv, M=r*F=0 to dL/dt =0 to L=const, L=mr1v1=mr2v2, moment pędu L (dla r obrot)- L=r*p, L=rpsinθ=rp, dL/dt= d(r*p)/dt =dr/dt*p+r*dp/dt= v*p +r*F, vIIp to v*p=0 toM=dL/dt, M=0 to L=const. M=moment sił moment pędu dla bryły sztywnej – L=Iω, x1= rcos (φ) x2= rsin (φ) x3= z moment siły (dla r obrotowego)- M=r*F, M=rFsinθ=rF, zas Zach momentu pędu- ΣMzew=0 to dLcal/dt=0to Lcel=const, Moment bezwładności miara bezwładności ciała w ruchu obrotowym wzgl określonej, ustalonej osi obrotu. Im większy moment, tym trudniej zmienić ruch obrotowy ciała I=mr2, I=Σmiri2 precesja osi ziemi- zjawisko przejawiające się wyk przez oś Ziemi ruchu po pow bocznej stożka. oś ziemska kreśli na tle nieba okrąg. Zjaw to jest wywoł jest przez oddz graw Księżyca i Słońca. Oś obrotu Ziemi nie jest prostop do jej płaszczyzny obiegu wokół Słońca,a Ziemia Jest spłaszczona na bieg, stąd jej moment bezwł wzgl osi obrotu jest większy niż dla kuli. 1 prawo Keplera Każda planeta krąży wokół Słońca po orbicie eliptycznej, a w 1 z 2 ognisk tej elipsy znajduje się Słońce. 2 prawo KepleraPromień wodzący planety, poprowadzony ze srodka Słońca do sr planety zakreśla w takich samych przedziałach czasu jednakowe pola powie (prawo równych Pol) F=f*r/r, F=-G*Mm/r2* r/r moment siły: M= rxF=rx (-GMm/r2*r/r) =-GMm/r3 * (rxr)=0 to L=const, L=mvR=mωR2= const to dS/dt=L/2m=const 3 prawo Kepl Kwadraty okresów obiegu planet wokół Słońca  są wprost propor do sześcianów ich średnich odległości od Słońca. T2~a3, mωR2=G*Mm/R2, 4π2/T2* R3=GM, T2=4π2/Gm*R3 to R13/ R23=T12/T22

Energia kin- zgromadzona praca, zdolność do wyk pracy, W=Fs=ma (V0t+at2/2)= ma(V0t+ v-v0/t*t2/2)= ma(V0t+ v+v0/2)= m/2(v2-vo2)to W=mv2/2-mvo2/2 W=ΔEkin=mv2/2 energia pot- en jaką ma układ ciał umieszczo w polu sił zach. wynikająca z rozm tych ciał =pracy, jaką trzeba wykonać, aby uzyskać daną konfigurację ciał, wychodząc od innego rozm, dla którego umownie przyjmuje się jej wartość =0, Ep=-GmM/r zas Zach energii- gdy nie działają sily zewn Fzew=0todE/dt=0to Ecal=Ek+Ep+U =const zderzenie doskonale niesprężyste- zas Zach en nie spełniona zas Zach pędu spełniona p1+p2=p’ m1v1x+ m2v2x= (m1+m2) vx’, m1v1y+ m2v2y= (m1+m2) vy’ vx’= m1v1x+ m2v2x/ m1+m2, vy’= m1v1y+ m2v2y/ m1+m2, V’=Vsm zderzenie doskonale sprężyste zas Zach en i pędu spełnione m1v1= m1v1’+m2v2’, 1/2 m1v12 = 1/2m1v12+m2v22, v1’= m1-m2/ m2+m1*v1,v2’= 2m1/m2+m1*v1gdym1= m2tov1=0,v2’=v1 praca iloczyn skalarny siły i przemieszczenia W=Fs, dW= F(s)*ds, praca rozciągniętej sprężyny W=k* Δl2 /2 moc- praca wykonana w jednostce czasu P=dW/dt=F*ds/dt=Fv siła pozorna- siła pojawiająca się w nieinercjalnym ukł odniesienia, będąca wynikiem przyspiesz tego układu. Siła pozorna nie jest oddziaływ z innymi ciałami, jak to ma miejsce w sile klasycznie rozumianej grawitacji (np. siła bezwł w hamowaniu lub przysp, siła odśrod, siła Coriolisa) F=ma

siła rzeczywista-siły kontaktowe, siła grawitacji, siła tarcia przysp. Coriolisa- Δvr= vrΔφ,Δvs=ω (r+Δr)- ω(r)= ωΔr, a1=dvr/dt= vr* dφ/ dt=vr ω, a2= dvs/dt= ω * dr/dt= vs ω, a0=acor=a1+a2=2vr ω

efekt występujący w obracających się układach odn Dla obserw pozostającego w obracającym się układzie odn, objawia się zakrzywieniem toru ciał poruszających się w takim ukł. Zakrzywienie to zdaje się być wywołane jakąś siłą Siła Coriolisa jest siłą pozorną, wyst w nieinercjalnych układach obracających się. Siła Coriolisa F=ma=2mvx ω np. Ciało upuszczone ze szczytu wieży Eiffla spadnie przesunięte na wsch (nie uwzglinnych sił). W czasie wojny rakiety, wystrzeliwane w kierunku Londynu z odl ok 300 km, lecąc z V= 1400 km/h, uderzały ok 3,7 km na wschód od celu Siła Lorentzasiła jaka działa na cząstkę obdarzoną ładunkiem elektrycznym poruszającą się w polu elektromagnetycznym F= q(E+VxB) Prawo Gaussa Strumień nat pola elektrostat przechodzący przez dowolną powierzchnię zamkniętą równy jest algebraicznej sumie ładw zawartych wewnątrz tej powierzchni podzielonej przez przenikalność elektryczną próżni. dEds=Qwew/ ε potencjał:v=k*Q/r kondensatory pojemność: C=Q/U=Q/V Wypr prawa Ohma m*Δu/Δt=eE to Δu=ΔteE/m, Δt= λ/u, v=e λE/Mu,I=nSev=ne2 λSE/mu= ne2λSU/mul,R=U/I=mu/ne2 λ*l/S, R=ρ*l/S sila harmoniczna F=-kx gdzie x=Acosωt

Równanie oscylatora drgań harmonicznych nietłumionych- F=-kx, ma=-kx to m*d2x/dt2=-kx, d2x/dt2=-k/m*x, d2x/dt2+k/m*x=0, x=Acos(ωt+φ), v(t)=dx/dt=-Aωsin (ωt+φ), a(t)=dv/dt=d2x/dt2= -Aω2cos (ωt+φ)= - ω2x(t), -Aω2cos (ωt+φ)+ k/m*Acos(ωt+φ)=0 to ω2=k/m okres drgan:T=2π/ω, Ep=kx2/2=kA2cos2 ωt /2=mA2 ω2cos2 ωt/2, Ek= mv2/2= mA2 ω2sin2 ωt/2= kA2 sin2 ωt/2, Ec= Ep+Ek=kA2/2=const tłumionych F=-kx, F=-bv=-b*dx/dt, -kx-b* dx/dt =m*d2x/dt2 to d2x/dt2+(b/m)dx/dt+ (k/m)x=0, d2x/dt2+2β*dx/dt+ ω2x=0, x=Ae- βtcos(ωt+ φ) równanie fali biegnącej- y=Asin(kx- ωt+ φ) gdzie k=2π/λ, ω=2π/T=2πf, v= ω/k Dośw Younga – eksperyment polegający na przepuszczeniu światła spójnego przez 2 blisko siebie położone szczeliny i obserwacji obrazu powstającego na ekranie. Wskutek interferencji na ekranie powstają jasne i ciemne prążki w obszarach, w których światło jest wygaszane lub wzmacniane. Warunek powst max. dsinα=k λ, war powst min. dsinα =(2k+1/2) λ fale spójne fazowo- tzn. ze fale maja taka sama długość, amplitudę, płaszczyznę polaryzacji stałą w czasie różnice faz interferencja fal stojacych – rozchodzenie się w przeciwnych kierunkach np.+x i –x, y= y1+y2= 2Asinkxcosωt, cząstki ośrodka drgaj ar harm prostym ale w sprzeciwień do fali biegnącej rożne punkty ośrodka maja rożne amplitudy drgań zależne od ich położenia x barwa dźwięku- Uzależniona jest od ilości, rodzaju i nat tonów składowych 1 prawo Maxwella Zmienne pole magn wytwarza wirowe pole elektr. Cyrkulacja wektora natężenia pola elektr jest równa szybkości zmian strumienia pola magn. ΣE*Δl=- Δφ/ Δt 2 prawo Maxwella Pole magn wytwarzane jest przez prąd elektr, jak również przez zmienne pole elekt Cyrkulacja wektora indukcji pola magn po krzywej zamkniętej jest równa sumie natęż prądu elektr przenikającego przez powierzchnię rozpiętą na tej krzywej, pomnożonemu przez współczynnik przenikalności magn próżni oraz szybkości zmiany strumienia pola elekt przechodząceg przez tę powierzchnię pomnożonej przez iloczyn współczynnika przenikalności elektr i magn próżni Prawo indukcji elektromag Faradaya Siła elektromotor indukcji wzbudzona w obwodzie, objętym zmieniającym się strumieniem magn jest równa ujemnej szybkości zmian tego strumienia magn. E=Δφ/Δt Prawo Ohma dla odcinka obwodu
Nat prądu płynącego przez dany przewodnik jest ~do napięcia przyłożonego na jego końcach. Prawo Ohma dla całego obwodu
Nat prądu płynącego przez obwód rzeczywisty jest ~do całkowitej siły elektromot przyłożonej do obwodu a odwrotnie propor do sumy całkowit oporu zewno i całkowitego oporu źródła w tym obwodzie E=I/R+r Prawo Ohma – stosunek napięcia przyłożonego do przewodnika do Nat prądu przepływającego przez ten przewodnik jest stały i nie zależy ani od napięcia ani od natężenia prądu R=ΔV/I=U/I
Zależność oporu przewodnika od temp,zwiększanie temp sprowadza się do zwiększania energii drgań sieci krystalicznej. drgania sieci kryst przeszkadzają w swobodnym przemieszczaniu się elektronów: opór przewodników zwykle rośnie ze wzrostem temp otóż wraz ze wzrostem temp przybywa tam elektronów zerwanych z więzi mocujących je do atomów, co ułatwia przepływ prądu i wiąże się oczywiście ze zmniejszaniem oporu. ρT – ρo= ρo α(T-To) 1 prawo Kirchhoffa (dla węzła obwodu)
Suma nat prądów wpływających do danego węzła obwodu jest równa sumie natę prądów wypływających w tej samej chwili czasu z tego węzła. ( inne sformułowanie: algebraiczna suma natężeń prądów przepływających w danym czasie przez węzeł obwodu wynosi zero) ΣI=0, d/DTP=0 2 prawo Kirchhoffa (dla oczka obwodu) Algebraiczna suma wszystkich napięć i sił elektromot występujących w danym oczku obwodu wynosi zero. Σε+ΣIR =0 efekt Halla- Polega on na wystąpieniu różnicy potencjałów w przewodniku, w którym płynie prąd el, gdy przewodnik znajduje się w poprzecznym do płynącego prądu polu magn v=I/neS=j/ne Prawo Ampère'aKrążenie wektora nat pola magn po dowolnej krzywej zamkniętej jest równe algebraicznej sumie nat prądów przepływających przez powierzchnię rozpostartej na tej krzywej. Całka zBdl=Iμ Fale materii, falami de Broglie'a jest to, alternatywny w stosunku do klasycznego sposób opisu obiektów materialnych. Według hipotezy de Broglie'a dualizmu korpuskularno-falowego każdy obiekt materialny może być opisywany na dwa sposoby: jako zbiór cząstek, albo jako fala (materii). Obserwuje się efekty potwierdzające falową naturę materii w postaci dyfrakcji cząstek elementarnych a nawet całych jąder atomowych. λ=h/p h-stała Plancka pęd potwierdzenie: dyfrakcję elektronów na krysztale niklu postulaty Bohra- 1Orbitalny moment pędu elektronu jest skwantowany. Może on przybierać dyskretne wartości L=n*h/2pi 2 Podczas zmiany orbity, której towarzyszy zmiana energii el, atom emituje foton. Energia fotonu równa jest różnicy między energiami elekt na tych orbitach Ef=hv=E2-E1 zjawisko fotoelektryczne polega na emisji elektrono z powierzchni przedmiotów, przeniesieniu nośników ładunku el pomiędzy pasmami energetycznymi (tzw. zjawisko fotoelektryczne wewn, w wyniku naświetlania promieniowaniem elektromag (na przykład światłem widzialnym) o odpowiedniej częstotliwości, zależnej od rodzaju przedmiotu. Hv=W+Ekin Zakaz Pauliego głosi, że w danym stanie kwantowym może znajdować się jeden fermion - albo inaczej, że żadne dwa fermiony nie mogą w jednej chwili wyst w dokładnie tym samym stanie kwantowym Plancka stała h, fundamentalna stała fizyczna, kwant momentu pędu (lub działania), wielkość h = 6,62491·10-34
Ciało doskonale czarneciała pochłaniającego całkowicie padające na nie promieniowanie elektromage niezależnie od tem tego ciała, kąta padania i widma padającego promieniowania. Współczynnik pochłaniania dla takiego ciała jest równy jedności dla dowolnej długości fali foton- jest cząstką elementarną nie posiadającą ładunku elektrycznego ani momentu magn, o masie spoczynkowej równej 0 Prawo rozpadu promieniotwórcze to zależność określająca szybkość ubywania pierwotnej masy substancji zbudowanej z jednego rodzaju cząstek, która ulega naturalnemu, spontanicznemu rozpadowi dm= -λmdt po scałkowaniu m(t)=me-λt zasada Pauliego – w atomie wieloelekt w tym samym sanie kwantowym może znajdować się co najwyżej 1elektron zasada nieoznaczo Heisenberga- iloczyn nieokreśloności pędu cząstki i nieokreśloności jej położenia w danym kierunku jest zawsze większy od stałej Plancka ogólną teorią względności, siła grawitacji wynika z lokalnej geometrii czasoprzestrzeni Szczególna teoria względności Zasadzie względności Zasada głosząca, że prawa fizyki są jednakowe we wszystkich układach inercjalnych musi obowiązywać dla wszystkich praw zarówno mechaniki jak i elektrodynamiki.Niezmienność prędkości światła Prędkość światła w próżni jest taka sama dla wszystkich obserwatorów, taka sama we wszystkich kierunkach i nie zależy od prędkości źródła światła. Atomy składają się z jądra i otaczających to jądro elektronów. W jądrze znajdują się z kolei nukleony: protony i neutrony. Neutrony są cząstkami obojętnymi elektrycznie, protony noszą ładunek elektryczny dodatni, zaś elektrony – ujemny Prawo WienaDla ciała doskonale czarnego iloczyn długości fali, odpowiadającej największemu natężeniu promieniowania (maksimum emisji promieniowania) i  temperatury bezwzględnej mu odpowiadającej ma wartość stałą i wynosi 2,8978·10-3 m·K Prawa odbicia fal 1 Promień fali padającej na granicę dwóch ośrodków, prosta padania oraz promień fali odbitej leżą w jednej płaszczyźnie. 2 Kąt odbicia fali od granicy dwóch ośrodków jest równy katowi padania Prawa załamania fal 1  Promień fali padającej na granicę dwóch ośrodków, prosta padania oraz promień fali załamanej leżą w jednej płaszczyźnie. 2  Stosunek sinusa kąta padania do sinusa kata załamania fali na granicy dwóch ośrodków jest równy stosunkowi prędkości rozchodzenia się fali w ośrodku pierwszym do prędkości rozchodzenia fali w ośrodku drugim Prawo Joule'a Ilość energii cieplnej wydzielonej w przewodniku, przez który przepływa prąd elektryczny jest równa pracy wykonanej przez ten prąd, czyli wytworzonej energii elektrycznej w wyniku przepływu prądu.Q=IR2t Prawo Hooke'a Przyrost długości, jakiego doznaje ciało sprężyste rozciągane siła osiową, jest wprost proporcjonalny do wartości tej siły i do długości początkowej rozciąganego ciała a odwrotnie proporcjonalny do pola przekroju poprzecznego ciała, zależy także od rodzaju materiału z jakiego ciało jest wykonane. Równanie Schrödingera jest jednym z podstawowych równań nierelatywistycznej mechaniki kwantowej (obok równania Heisenberga), sformułowanym przez austriackiego fizyka Erwina Schrödingera w 1926 roku. Opisuje ono ewolucję układu kwantowego w czasie. W nierelatywistycznej mechanice kwantowej odgrywa rolę analogiczną do drugiej zasady dynamiki Newtona w mechanice klasycznej.

Wyszukiwarka

Podobne podstrony:
Urazy narządu ruchu
Metoda Ruchu Rozwijajacego Sherborne
Kształcenie ruchowe i metodyka naucznia ruchu
Układ ruchu ppt
Opory ruchu
Lekcja wychowania fizycznego jako organizacyjno metodyczna forma lekcji ruchu
efekt ruchu id 150783 Nieznany
avt 730 Dalekosiężny tor podczerwieni
prawo ruchu drogowym
Mechanika Ruchu Okretu I Harmonogram id 291291
kruszyna, inżynieria ruchu, sygnalizacja z priorytetem dla tramwajów
INZYNIERIA RUCHU 7 8 INZYNIERIA Nieznany
Bączyk pielegnowanie narząd ruchu

więcej podobnych podstron