„Załamanie i odbicie światła”
Załamanie światła
Załamanie różni się zdecydowanie od odbicia, ponieważ w jego wyniku światło zmienia ośrodek w jakim się rozchodzi. Wraz ze zmianą ośrodka dochodzi najczęściej do zmiany kierunku rozchodzenia się światła.
Załamanie światła powoduje szereg ciekawych efektów - m.in. złudzenie "złamania" łyżeczki od herbaty umieszczonej w szklance, nieprawidłowej lokalizacji dna jeziora, gdy patrzymy na nie z brzegu. Załamanie światła jest wykorzystywane do budowy soczewek stosowanych w okularach, obiektywach aparatów, lunetach i innych przyrządach optycznych.
Przykłady. Załamanie występuje m.in. gdy światło przechodzi:
z powietrza do wody | |
---|---|
z wody do powietrza | |
ze szkła do powietrza | |
z powietrza do szkła | |
z warstwy powietrza gęstszego do rzadszego | |
itd... |
Ogólnie - światło będzie się załamywać prawie zawsze gdy zmienia się ośrodek.
Warto dość mocno skojarzyć sobie załamanie ze zmianą ośrodka, bo istnieje podobne w nazwie zjawisko optyczne – ugięcie, które może się pomylić z załamaniem. Ugięcie ma inną naturę (zachodzi w jednym ośrodku) i inaczej przebiega, tak więc pomylenie tych zjawisk byłoby poważnym błędem.
Załamanie światła jest podstawowym zjawiskiem na którym opiera się funkcjonowanie soczewek i pryzmatów. Z załamaniem światła wiąże się dodatkowy efekt związany z tym, że promienie o różnych barwach dość często załamują się różnie.
Światło padające na granicę dwóch ośrodków może ulec odbiciu. Dzieje się tak bardzo często, przy czym dodatkowo część wiązki świetlnej może dodatkowo ulegać załamaniu.
Zasada Fermata w optyce jest szczególnym przypadkiem zasady najmniejszego działania.
Zasadę tę sformułował Pierre de Fermat. Treść jej w ujęciu Fermata miała następujące brzmienie:
Promień świetlny poruszający się (w dowolnym ośrodku) od punktu A do punktu B przebywa zawsze lokalnie minimalną drogę optyczną, czyli taką, na której przebycie potrzeba czasu najkrótszego.
Obecnie wiadomo, że sformułowanie to nie jest ścisłe. Światło w istocie porusza się po takiej drodze optycznej, która jest stacjonarna, co oznacza, że czas jej pokonania nie zmienia się przy niewielkiej zmianie kierunku biegu promienia. W klasycznych zagadnieniach (załamanie, odbicie od płaskiej powierzchni) jest to droga pokonywana w minimalnym czasie. Ale w przypadku soczewkowania grawitacyjnego światło porusza się po drodze maksymalnej, podczas gdy przy odbiciu od zwierciadła eliptycznego droga promienia osiąga punkt siodłowy (zmiana w jednym kierunku powoduje wzrost czasu pokonania drogi a w kierunku prostopadłym do pierwszego – zmniejszenie).
Na podstawie zasady Fermata można wyprowadzić prawo odbicia i załamania.
Przykład: wyprowadzenie prawa załamania:
Światło biegnie z punktu A do punktu B. Chcemy odnaleźć krzywą, po której się ono porusza. Załóżmy, że mamy dwa ośrodki optyczne o bezwzględnym współczynniku załamania i . Wtedy prędkość światła w każdym z tych ośrodków wynosi odpowiednio: i (rysunek). Oznaczmy przez x punkt, w którym światło przechodzi przez granicę dwóch ośrodków (najszybszą drogą dotarcia do tego punktu w jednorodnym ośrodku jest linia prosta). Czas potrzebny na przebycie tej drogi to:
gdzie a jest odległością między punktami A i B mierzoną w poziomie wzdłuż granicy ośrodków. Stacjonarność rozwiązania wymaga zerowania się pierwszej pochodnej czasu po x
Zatem:
Odbiciem rządzi dość proste prawo zwane prawem odbicia.
β = α
Kąt odbicia równy jest kątowi padania.
Kąty - padania i odbicia leżą w jednej płaszczyźnie.
Typowe, najbardziej nam znane odbicie zachodzi wtedy, gdy drugi ośrodek jest w ogóle nieprzepuszczalny dla światła. Jeżeli dodatkowo w tym drugim ośrodku światło nie jest pochłaniane, to cała wiązka ulega odbiciu. W ten sposób otrzymujemy zwierciadło.
Uwaga!
Warto zwrócić uwagę na fakt, że zarówno kąt padania, jaki i odbicia liczone są od normalnej, a nie od powierzchni rozgraniczającej ośrodki. Odbicie i załamanie światła
Podczas odbicia światła od gładkiej przeszkody kąt padania i kąt odbicia ma tą samą miarę. Następuje odbicie światła. Kierunek rozchodzenia się światła po odbiciu nazywamy promieniem odbitym. Kąt zawarty między promieniem padającym na powierzchnię a prostą prostopadłą do tej powierzchni nazywamy kątem padania światła . Kąt zawarty między promieniem odbitym a tą prostopadłą nazywamy kątem odbicia.
Przy przejściu światła z jednego ośrodka do drugiego kierunek rozchodzenia się światła zawsze ulega zmianie. Następuje załamanie światła. Kierunek rozchodzenia się światła po załamaniu nazywamy promieniem załamanym. Kat zawarty między promieniem padającym na powierzchnię a prostą prostopadłą nazywamy katem padania światła. Kąt zawarty między promieniem załamanym a tą prostopadłą nazywamy kątem załamania.
PRAWO ODBICIA ŚWIATŁA:
Kąt odbicia jest równy kątowi padania, a promień padający , promień odbity i normalna leżą w jednej płaszczyźnie.
PRAWO ZAŁAMANIA ŚWIATŁA:
Promień załamany leży w płaszczyźnie padania. Gdy światło przechodzi z ośrodka optycznie rzadszego do ośrodka optycznie gęstszego kąt załamania jest mniejszy niż kąt padania. W przypadku przechodzenia światła z ośrodka optycznie gęstszego do ośrodka optycznie rzadszego kąt załamania jest większy od kąta padania.
Gdy światło pada na granicę dwóch ośrodków pod katem mniejszym od granicznego, zwykle zachodzi równoczesne załamanie i odbicie. Energia promienia padającego dzieli się pomiędzy oba promienie. Gdy chcemy zmienić kierunek biegu promienia bez zmiany unoszonej przez światło energii, wykorzystujemy zjawisko całkowitego wewnętrznego odbicia. Znalazło to szerokie zastosowanie w światłowodach, które są szeroko wykorzystywane do przekazu informacji ( nawet do 2 miliardów impulsów światła na sekundę).
Efekt wynikający z załamania światła