dzidkowski hamilton 1

Zadanie 1

Z wykorzystaniem metody Hamiltona

dane są warunki:

I2 = 2I1 $I_{3} = \frac{3I_{1}}{2}$ $r_{2} = \frac{3r_{1}}{2}$

zapisujemy energie:


$$E_{k} = \frac{I_{1}{\dot{\varphi}}_{1}^{2}}{2} + \frac{I_{3}{\dot{\varphi}}_{3}^{2}}{2} + \frac{I_{2}{\dot{\varphi}}_{2}^{2}}{2} + \frac{m_{4}{\dot{x}}_{4}^{2}}{2}$$


U = m4gx4

następnie szukamy warunków geometrycznych, które nie są znane:


$$\varphi_{3} = \frac{2\varphi_{1}r_{1}}{l}$$


$$\varphi_{2} = \frac{\varphi_{1}r_{1}}{r_{2}} = \frac{2\varphi_{1}r_{1}}{3r_{1}} = \frac{2\varphi_{1}}{3}$$


x4 = φ2r2 = φ1r1

sprowadzamy równania energii do najprostszej postaci


$$E_{k} = \frac{I_{1}{\dot{\varphi}}_{1}^{2} + \frac{3I_{1}}{2}\left( \frac{2{\dot{\varphi}}_{1}r_{1}}{l} \right)^{2} + 2I_{1}\left( \frac{2{\dot{\varphi}}_{1}}{3} \right)^{2} + m_{4}\left( {\dot{\varphi}}_{1}r_{1} \right)^{2}}{2} = = \frac{I_{1}{\dot{\varphi}}_{1}^{2} + 6I_{1}\left( \frac{{\dot{\varphi}}_{1}r_{1}}{l} \right)^{2} + \frac{8I_{1}{\dot{\varphi}}_{1}^{2}}{3} + m_{4}\left( {\dot{\varphi}}_{1}r_{1} \right)^{2}}{2}$$


U = m4gx4

następnie obliczamy:


$$p_{\varphi_{1}} = \frac{\text{dE}}{d{\dot{\varphi}}_{1}} = I_{1}{\dot{\varphi}}_{1} + 6I_{1}{\dot{\varphi}}_{1}\left( \frac{r_{1}}{l} \right)^{2} + \frac{8I_{1}{\dot{\varphi}}_{1}}{3} + m_{4}{{\dot{\varphi}}_{1}\left( r_{1} \right)}^{2}$$


$${\dot{\varphi}}_{1} = \frac{p_{\varphi_{1}}}{I_{1} + 6I_{1}\left( \frac{r_{1}}{l} \right)^{2} + \frac{8I_{1}}{3} + m_{4}\left( r_{1} \right)^{2}}$$


$$\tilde{E} = \frac{I_{1} + 6I_{1}\left( \frac{r_{1}}{l} \right)^{2} + \frac{8I_{1}}{3} + m_{4}\left( r_{1} \right)^{2}}{2} \bullet \left( \frac{p_{\varphi_{1}}}{I_{1} + 6I_{1}\left( \frac{r_{1}}{l} \right)^{2} + \frac{8I_{1}}{3} + m_{4}\left( r_{1} \right)^{2}} \right)^{2} = = \frac{\frac{1}{2}p_{\varphi_{1}}^{2}}{I_{1} + 6I_{1}\left( \frac{r_{1}}{l} \right)^{2} + \frac{8I_{1}}{3} + m_{4}\left( r_{1} \right)^{2}}$$

równanie Hamiltona:


$$H = \tilde{E} + U$$


$$H = \frac{\frac{1}{2}p_{\varphi_{1}}^{2}}{I_{1} + 6I_{1}\left( \frac{r_{1}}{l} \right)^{2} + \frac{8I_{1}}{3} + m_{4}\left( r_{1} \right)^{2}} + m_{4}gx_{4}$$


$$\frac{dp_{\varphi_{1}}}{\text{dt}} = - \frac{\text{dH}}{d\varphi_{1}} + M = - m_{4}g + Mr_{1}$$


$$\frac{dp_{\varphi_{1}}}{\text{dt}} = I_{1}{\ddot{\varphi}}_{1} + 6I_{1}{\ddot{\varphi}}_{1}\left( \frac{r_{1}}{l} \right)^{2} + \frac{8I_{1}{\ddot{\varphi}}_{1}}{3} + m_{4}{{\ddot{\varphi}}_{1}\left( r_{1} \right)}^{2}$$


$$I_{1}{\ddot{\varphi}}_{1} + 6I_{1}{\ddot{\varphi}}_{1}\left( \frac{r_{1}}{l} \right)^{2} + \frac{8I_{1}{\ddot{\varphi}}_{1}}{3} + m_{4}{{\ddot{\varphi}}_{1}\left( r_{1} \right)}^{2} + m_{4}g = Mr_{1}$$

przyjmujemy dane w celu wykreślenia wykresów:

I1 = 0.1kgm2 r1 = 0.5m l = 1m m4 = 0.4kg M = 25sin(t) Nm


Wyszukiwarka

Podobne podstrony:
dzidkowski hamilton 2
dzidkowski hamilton 1
Mechanika analityczna dzidkowski hamilton 2
dzidkowski hamilton 2
dzidkowski hamilton 1
dzidkowski hamilton 1
Introduction to Lagrangian and Hamiltonian Mechanics BRIZARD, A J
dzidkowski lagrange 2
Edmond Hamilton Captain Future's Worlds of Tomorrow 17 Futuria
Edmond Hamilton Captain Future's Worlds of Tomorrow 05 Mars
SKALA DEPRESJI HAMILTONA, Dokumenty- pedagogika, psychologia, emisja głosu
tchoń,mechanika analityczna,MECHANIKA HAMILTONOWSKA
Hamilton W R On quaternions, or on a new system of imaginaries in algebra (1850, reprint, 2000)(92s)
Edmond Hamilton Captain Future's Worlds of Tomorrow 01 Jupiter
Hamilton Laurell Cyrk potępieńców
Hamilton Laurell Grzeszne rozkosze
Hamilton Laurell Pocałunek ciemności
dzidkowski lagrange 2
hamilton

więcej podobnych podstron