MI $Us = \frac{1}{2}\left( U^{'} + U^{''} \right)$ $Io = \frac{1}{3}\left( I^{'} + I^{''} + I^{'''} \right)$ Po = P′ + P″ ΔPcuo = 3Rs * Io2 ΔPo = Po − ΔPcuo= ΔPm + ΔPfe Im = Io * sinφo Iocz = Io * cosφo $\cos\varphi o = \frac{\text{Po}}{\sqrt{3}\text{UsIo}}$ $Xm = \frac{\text{Us}}{\sqrt{3}\text{Im}}$ $Rfe = \frac{\text{Po}}{\sqrt{3}\text{UsIocz}}$ $Zz = \frac{\text{Uz}}{\sqrt{3}\text{Iz}}$ $Rz = \frac{\text{Pz}}{3\text{Iz}^{2}}$ Rr′ = Rz − Rs $X\sigma s = X\sigma r^{'} = \frac{1}{2}\sqrt{\text{Zz}^{2} - \text{Rz}^{2}}$
TR ΔPfe = Po = Poa + Pob + Poc $Io = \frac{1}{3}(Ioa + Iob + Ioc)$ $Rfe = \frac{U1}{\text{Iocz}}$ $Xm = \frac{U1}{\text{Im}}$ $Iocz = \frac{\text{Po}}{3U1}$ $Im = \sqrt{\text{Io}^{2} - \text{Iocz}^{2}}$ ΔPcu = 3Iz2(R1+R2′) $R1 = R2^{'} = \frac{1}{2}\text{Rz}$ Rz = Zz * cosφz Xz = Zz * sinφo $Zz = \frac{U1}{\text{Iz}}$ $\vartheta = \frac{\text{Ug}}{\text{Ud}}$ $R2 = \frac{\text{Rz}}{2\vartheta^{2}}$ $X\sigma 2 = \frac{\text{Xz}}{2\vartheta^{2}}$