$\frac{dd_{1}'}{dd_{1}} = \frac{1}{2\sqrt{{d_{1}}^{2} + e^{2} - 2d_{1}e\cos\theta}}\left( 2d_{1} - 2ecos\theta \right)\ $
$\frac{dd_{1}'}{\text{de}} = \frac{1}{2\sqrt{{d_{1}}^{2} + e^{2} - 2d_{1}e\cos\theta}}(2e - 2d_{1}cos\theta)$
$\frac{dd_{1}'}{\text{dθ}} = \frac{- 1}{2\sqrt{{d_{1}}^{2} + e^{2} - 2d_{1}e\cos\theta}}(2d_{1}esin\theta)$
md1′= $\pm \sqrt{{(\frac{dd_{1}'}{dd_{1}})}^{2}{md_{1}}^{2} + {(\frac{dd_{1}'}{\text{de}})}^{2}\text{me}^{2} + {(\frac{dd_{1}'}{\text{dθ}})}^{2}{(\frac{\text{mθ}}{\rho})}^{2}}$
md1′=± 0,1m
md2′=± 0,2m
md3′=± 0,3m
Redukcja mimośrodowa kąta θ
θi = θ + Ki − K1
θ1= 291,2639g
θ2= 303,1011g
θ3= 332,5853g
mθi=$\ \pm \sqrt{\text{mθ}^{2} + {mK_{i}}^{2} + {mK_{1}}^{2}} = \pm \sqrt{\text{mθ}^{2} + 2{mK_{i}}^{2}}$
mθ1= ± 3,62c
mθ2= ± 3,62c
mθ3= ± 3,62c
Wyznaczenie kąta ε
$\varepsilon_{i} = arcsin(\frac{e}{d_{i}'}\sin\theta_{i})$
ε1= -0,6262g
ε2= -1,0469g
ε3= -0,7064g
$\frac{d\varepsilon_{i}}{de'} = \frac{1}{\sqrt{1 - {(\frac{e^{'}}{d_{i}'}\sin\theta_{i})}^{2}}}\frac{\sin\theta_{i}}{d_{i}'}$
$\frac{d\varepsilon_{i}}{dd_{i}'} = \frac{1}{\sqrt{1 - {(\frac{e^{'}}{d_{i}'}\sin\theta_{i})}^{2}}}e'sin\theta_{i}( - \frac{1}{{d_{1}'}^{2}})$
$\frac{d\varepsilon_{i}}{d\theta_{i}} = \frac{1}{\sqrt{1 - {(\frac{e^{'}}{d_{i}'}\sin\theta_{i})}^{2}}}\frac{e'}{d_{i}'}\cos\theta_{i}$
mε1′= $\pm \sqrt{{(\frac{d\varepsilon_{i}}{\text{de}})}^{2}{(me\rho)}^{2} + {(\frac{d\varepsilon_{i}}{dd_{1}})}^{2}{(md_{1}\rho)}^{2} + {(\frac{d\varepsilon_{i}}{\text{dθ}})}^{2}{(m\theta)}^{2}}$
mε1=±6,0cc
mε2=±10,9cc
mε3=±20,1cc
Obliczenie kierunków z punktu centrycznego
Ki′ = Ki + εi
K1′= 399,3738g
K2′= 10,7902g
K3′= 40,6150g
mK1′= $\sqrt{m{K_{i}}^{2} + m{\varepsilon_{i}}^{2}}$
mK1′= 8,5cc
mK2′= 12,4cc
mK3′= 21,0cc