Algorytm oceny dokładności obliczenia elementów mimośrodu:
$$m_{d_{1}} = \pm \sqrt{\left( \frac{\partial d_{1}}{\partial b_{1}} \right)^{2}m_{b_{1}}^{2} + 2\left( \frac{\partial d_{1}}{\partial K_{A1}} \right)^{2}\left( \frac{m_{K_{A1}}}{\mathcal{S}} \right)^{2} + 2\left( \frac{\partial d_{1}}{\partial K_{1C}} \right)^{2}\left( \frac{m_{K_{1C}}}{\mathcal{S}} \right)^{2}}$$
$$\frac{\partial d_{1}}{\partial K_{A1}} = b_{1}\frac{sin(K_{1C} - K_{1A})}{{sin({K_{A1} - K_{\text{AC}} + K}_{1C} - K_{1A})}^{2}}$$
$$\frac{\partial d_{1}}{\partial K_{1C}} = b_{1}\frac{- sin(K_{A1} - K_{\text{AC}}) \times cos(K_{A1} - K_{\text{AC}}{+ K}_{1C} - K_{1A})}{{sin({K_{A1} - K_{\text{AC}} + K}_{1C} - K_{1A})}^{2}}$$
$$m_{d_{2}} = \pm \sqrt{\left( \frac{\partial d_{2}}{\partial b_{1}} \right)^{2}m_{b_{1}}^{2} + 2\left( \frac{\partial d_{2}}{\partial K_{A1}} \right)^{2}\left( \frac{m_{K_{A1}}}{\mathcal{S}} \right)^{2} + 2\left( \frac{\partial d_{2}}{\partial K_{1E}} \right)^{2}\left( \frac{m_{K_{1E}}}{\mathcal{S}} \right)^{2}}$$
$$\frac{\partial d_{2}}{\partial K_{A1}} = b_{1}\frac{sin(K_{1E} - K_{1A})}{{sin({K_{A1} - K_{\text{AE}} + K}_{1E} - K_{1A})}^{2}}$$
$$\frac{\partial d_{2}}{\partial K_{1E}} = b_{1}\frac{- sin(K_{A1} - K_{\text{AE}}) \times cos(K_{A1} - K_{\text{AE}}{+ K}_{1E} - K_{1A})}{{sin({K_{A1} - K_{\text{AE}} + K}_{1E} - K_{1A})}^{2}}$$
$$\frac{\partial e^{'}}{\partial d_{2}} = \frac{d_{2} - d_{1}cos(K_{1E} - K_{1C})}{\sqrt{d_{1}^{2} + d_{2}^{2} - 2d_{1}d_{2}cos(K_{1E} - K_{1C})}}$$
$$\frac{\partial e^{'}}{\partial K_{1E}} = \frac{d_{1}d_{2}sin(K_{1E} - K_{1C})}{\sqrt{d_{1}^{2} + d_{2}^{2} - 2d_{1}d_{2}cos(K_{1E} - K_{1C})}}$$
$$m_{\varphi_{1}} = \pm \sqrt{\left( \frac{\partial\varphi_{1}}{\partial e^{'}} \right)^{2}\left( m_{e^{'}}\mathcal{\times S} \right)^{2} + \left( \frac{\partial\varphi_{1}}{\partial d_{1}} \right)^{2}\left( m_{d_{1}}\mathcal{\times S} \right)^{2} + \left( \frac{\partial\varphi_{1}}{\partial d_{2}} \right)^{2}\left( m_{d_{2}}\mathcal{\times S} \right)^{2}}$$
$$\frac{\partial\varphi_{1}}{\partial d_{1}} = \frac{d_{1}}{e^{'}d_{2}\sqrt{1 - x^{2}}}$$
$$\frac{\partial\varphi_{1}}{\partial d_{2}} = \frac{{e'}^{2} - d_{2}^{2}{- d}_{1}^{2}}{2{e'}^{2}d_{2}^{2}\sqrt{1 - x^{2}}}$$
$$m_{\theta'} = \pm \sqrt{m_{\beta_{1}}^{2} + m_{\varphi_{1}}^{2}}$$
$$m_{e} = \pm \frac{m_{e'}}{\sqrt{2}}$$