1.Obliczanie stałej C1
Wzór:
$$C_{1} = \frac{P}{n_{Sr}}$$
Wyniki planimetrowania wzorcowego kwadratu w skali 1:1500
4326
1002
5328
1004
6332
1002
7334
$$n_{Sr} = \frac{1002 + 1004 + 1002}{3} = 1002,67$$
Powierzchnia w terenie:
P = p * M2
Gdzie :
p- powierzchnia na mapie
M- mianownik skali
Skala : 1:1500
P = 100m2 * 15002 = 225′000′000cm2 = 22′500m2
Stała C1:
$$C_{1} = \ \frac{P}{n_{Sr}}$$
$$C_{1} = \ \frac{22'500m^{2}}{1002,67} = 22,44m^{2}$$
2.Obliczanie danej powierzchni:
2257
809
3066
812
3878
810
$$n_{Sr} = \frac{809 + 812 + 810}{3} = 810,33$$
Powierzchnia w terenie:
P = C1 * nSr
P = 22, 44 m2* 810, 33=18183, 80 m2
3.Metoda Graficzna
$$\text{P\ }_{\Delta} = \ \frac{a\ *h\ }{2}$$
$$P_{1}^{I} = \ \frac{\ 10,1*44}{2} = \ 22,22\text{cm}^{2}$$
$$P_{2}^{I} = \ \frac{13,6*\ 2,05}{2} = \ 13,94\text{cm}^{2}$$
$$P_{3}^{I} = \ \frac{13,6*\ 4,1}{2} = \ 27,88\text{cm}^{2}$$
$$P_{4}^{I} = \frac{11*\ 3,1}{2} = \ 17,05\text{cm}^{2}$$
PcI = P1I + P2I + P3I + P4I
PcI= 81, 09cm2
$$P_{1}^{\text{II}} = \ \frac{\ 10,1*44}{2} = \ 22,22\text{cm}^{2}$$
$$P_{2}^{II} = \ \frac{8,8*\ 7,25}{2} = \ 31,9\text{cm}^{2}$$
$$P_{3}^{II} = \ \frac{8,8*3,6}{2} = \ 15,84\text{cm}^{2}$$
$$P_{4}^{\text{II}} = \frac{4,2*5,3}{2} = \ 11,13\text{cm}^{2}$$
PcII = P1II + P2II + P3II + P4II
PcII= 81, 09 cm2
|PcII−PcI| ≤ 0, 02 P
P = 81, 09cm2*15002=182′452′500cm2=18245, 25m2
4.Metoda analityczna
$$2P = \sum_{i = 1}^{n}{x_{i}\left( y_{i + 1} - y_{i - 1} \right)}$$
2P= x1(y2-y6)+x2(y3-y1)+x3(y4-y2)+x4(y5-y3)+x5(y6-y4)+x6(y1-y5)
2P= 64,20(42,10+86,80)+41,30(65,9+67,6)- 33,00(40,00-42,10)-109,30(-15,40-65,90)- 78,90(-86,80-40,00)-76,40(-67,60+15,40)= 34135,58
2P=36736,92 /:2
P= 18368,46
$$- 2P = \sum_{i = 1}^{n}{y_{i}\left( x_{i + 1} - x_{i - 1} \right)}$$
-2P= y1(x2-x6)+y2(x3-x1)+y3(x4-x2)+y4(x5-x3)+y5(x6-x4)+y6(x1-x5)
-2P=-67,60(41,30+76,40)+42,10(-33,00-64,20)+65,90(-109,30-41,30)+40,00(-78,90+33,00)-15,40(-76,4+109,30)-86,8(64,20+78,90)=-36736,92
-2P=-36736,92 /: (-2)
P= 18368,46