Projekt
Prasa śrubowa
Prowadzący Wykonanie
dr Maluśkiewicz Magda Przydział
LG3
21.05.2012 r.
Śruba dane
P | h | α | sgr | R0 | R1 | E | x |
---|---|---|---|---|---|---|---|
2050 | 400 | 0,7 | 106 | 310 | 1,19 | 210000 | 60 |
l = h + x = 400 + 60 = 460
ls = α * l = 0, 7 * 460 = 322
$$i_{\min} = \sqrt{\frac{I_{\min}}{F}} = \sqrt{\frac{\frac{\pi*\text{dr}^{4}}{64}}{\frac{\pi*\text{dr}^{2}}{4}}} = \sqrt{\frac{\text{dr}^{2}}{16}} = \frac{\text{dr}}{4}$$
$$s = \frac{\text{ls}}{i_{\min}} = \frac{322}{\frac{\text{dr}}{4}} = \frac{1288}{\text{dr}}$$
Zakładam, że naprężenia występujące w śrubie są sprężyste:
$$Pw = \frac{\pi^{2}*E*I_{\min}}{\text{ls}^{2}} = \frac{{3,141593}^{2}*2,1*10^{5}*\frac{\pi*\text{dr}^{4}}{64}}{322^{2}} = 0,981244*\text{dr}^{4}$$
$$P = \frac{\text{Pw}}{x_{w}} = \frac{0,981244*\text{dr}^{4}}{3,5} = 0,280356*\text{dr}^{4}$$
$$dr = \sqrt[4]{\frac{P}{0,280356}} = \sqrt[4]{\frac{2050}{0,280356}} = 9,24722$$
Sprawdzenie czy założenie było prawidłowe
$$s = \frac{1288}{\text{dr}} = \frac{1288}{9,24722} = 139,2851$$
sgr = 106
s > sgr Oznacza, iż założenie było prawidłowe i dr=9,24722
Ponieważ wynikająca z obliczeń średnica jest zbyt mała, wobec tego do dalszych obliczeń przyjmujemy gwint Tr22x5, dla którego dr=16,5mm , ds=19,5mm , D0=17mm
$$F_{r} = \frac{\pi*\text{dr}^{2}}{4} = 213,8246$$
$$\sigma_{c} = \frac{P}{F_{r}} = 9,587295$$
W0 = 0, 2 * dr3 = 898, 425
$$\tan\rho^{'} = \frac{\mu}{\cos\frac{\alpha}{2}} = 0,103528$$
ρ′ = 555′
$$\tan{\gamma = \frac{h}{\pi*ds}} = \frac{5}{3,141593*19,5} = 0,081618$$
γ = 441′
ρ′ > γ warunek samohamowności jest spełniony
Ms = 0, 5 * P * ds * tan(γ + ρ′)=3740, 559
Mt = 0, 1 * Ms = 374, 0559
Msc = Ms + Mt = 3740, 559 + 374, 0559 = 4114, 615
$$\tau_{s} = \frac{\text{Msc}}{W_{0}} = \frac{4114,615}{898,425} = 4,579809$$
kcj = 66
ksj = 55
kc = 125
$$\sigma_{z} = \sqrt{\sigma_{c}^{2\ } + {(\frac{k_{\text{cj}}}{k_{\text{sj}}\ }*\tau_{s})}^{2}} = 11,05078$$
σz ≤ kc warunek spełniony
Nakrętka
MO59 kcj = 26 MPa
Pdop = 0, 8 * kcj = 20, 8
$$p = \frac{P}{F} \leq \ P_{\text{dop}}^{'}$$
Pdop′ = 12 MPa
$$\frac{P}{\frac{\pi}{4}*\left( d^{2} - D_{0}^{2} \right)*n} \leq P_{\text{dop}}^{'}$$
$$n \geq \frac{4P}{\pi*\left( d^{2} - D_{0}^{2} \right)*P_{\text{dop}}^{'}} = \frac{4*2050}{3,141593*\left( 22^{2} - 17^{2} \right)*12} = 1,115445$$
H = n * h = 1, 115445 * 5 = 5, 577225
H ≥ (1÷1,5)d = (22 ÷ 33)
H = 22
$$F_{1} = \frac{\pi*d^{2}}{4}$$
E1 = 2, 1 * 105
$$k_{1} = \frac{1}{F_{1}*E_{1}} = \frac{4}{\pi*d^{2}*E_{1}}$$
$$F_{2} = \frac{\pi}{4}*(D_{z}^{2} - d^{2})$$
E2 = 105
$$k_{2} = \frac{1}{F_{2}*E_{2}} = \frac{4}{\pi*\left( D_{z}^{2} - d^{2} \right)*E_{2}}$$
$$k_{1} = k_{2} \rightarrow \frac{4}{\pi*d^{2}*E_{1}} = \frac{4}{\pi*\left( D_{z}^{2} - d^{2} \right)*E_{2}} \rightarrow \frac{1}{d^{2}*E_{1}} = \frac{1}{\left( D_{z}^{2} - d^{2} \right)*E_{2}}$$
$$d^{2}*E_{1} = \left( D_{z}^{2} - d^{2} \right)*E_{2} \rightarrow \frac{E_{1}}{E_{2}}*d^{2} + d^{2} = D_{z}^{2} \rightarrow \left( \frac{E_{1}}{E_{2}} + 1 \right)*d^{2} = D_{z}^{2}$$
$$D_{z} = \sqrt{d^{2}*(\frac{E_{1}}{E_{2}} + 1)} = \sqrt{22^{2}*(\frac{2,1*10^{5}}{10^{5}} + 1)} = 38,735 \approx 39$$
$$p = \frac{P}{F} \leq P_{\text{dop}} \rightarrow p = \frac{P}{\frac{\pi}{4}*(D_{z}^{2} - D_{w}^{2})} \leq P_{\text{dop}}$$
Dw = 24
$$p = \frac{2050*4}{3,141593*(39^{2} - 24^{2})} = 2,762054$$
p ≤ Pdop warunek spełniony