$$S_{1} = \ \frac{c_{t}\ \times \ m_{l}}{T_{0}}$$
$$S_{1} = \ \frac{3,34\ \times \ 10^{5\ } \times 29,66\ \times \ 10^{- 3}}{273}$$
$$S_{1} = \ \frac{99,0644\ \times \ 10^{2}}{273}$$
S1 = 0, 3628732 × 102 = 36, 287 J/K
$S_{2} = \ \int_{T_{0}}^{T_{k}}\frac{\text{dQ}}{T} = \ m_{l}c_{w} \times \ \int_{T_{0}}^{T_{k}}\frac{\text{dT}}{T} = \ m_{l}c_{w}\ln\frac{T_{k}}{T_{0}}$
$$S_{2} = 29,66\ \times \ 10^{- 3}\ \times 4186\ \times \ 2,718281828\ \frac{282}{273}$$
S2 = 29, 66 × 10−3 × 4186 × 0, 032435275
S2 = 4027, 05874721 × 10−3 = 4, 027 J/K
$$S_{3\ } = \ m_{w}c_{w}\ln\frac{T_{k}}{T_{p}} + \ P_{k}\ln\frac{T_{k}}{T_{p}}\ $$
$$S_{3\ } = 158,9\ \times \ 10^{- 3}\ \times 4186\ \times \ln\frac{282}{295} + \ 75\ \times \ln\frac{282}{295}\ $$
S3 = 158, 9 × 10−3 × 4186 × ( −0,0450682854) + 75 × ( −0,0450682854)
S3 = − 29977, 4134 × 10−3 + (−3,3801)
S3 = − 29, 9774 − 3, 3801 = −33, 357 J/K
S = S1 + S2 + S3
S = 36, 287 + 4, 027 + (−33,357 )
S= 6,957 J/K