f(x0)=f(2) = 23 − 2 • 2 − 5 = −1
f′(x0)=f′(2) = 3 • 22 − 2 = 10
$$\mathbf{x}_{\mathbf{1}}\mathbf{=}\mathbf{x}_{\mathbf{0}}\mathbf{-}\frac{\mathbf{f}\left( \mathbf{x}_{\mathbf{0}} \right)}{\mathbf{f}^{\mathbf{'}}\left( \mathbf{x}_{\mathbf{0}} \right)} = \mathbf{2} - \frac{- 1}{10} = \mathbf{2,1}$$
|
f(x1)=f( 2,1 ) = 2, 13 − 2 • 2, 1 − 5 = 0, 061
f′(x1)=f′(2,1) = 3 • 2, 12 − 2 = 11, 23
$$\mathbf{x}_{\mathbf{2}}\mathbf{=}\mathbf{x}_{\mathbf{1}}\mathbf{-}\frac{\mathbf{f}\left( \mathbf{x}_{\mathbf{1}} \right)}{\mathbf{f}^{\mathbf{'}}\left( \mathbf{x}_{\mathbf{1}} \right)} = \mathbf{2,1} - \frac{0,061}{11,23} = \mathbf{2,}\mathbf{094568}$$
|
f(x2)=f( 2,09 ) = 2,093 − 2 • 2,09 − 5 = −0, 05
f′(x2)=f′(2,09) = 3 • 2,092 − 2 = 11, 10
$$\mathbf{x}_{\mathbf{3}}\mathbf{=}\mathbf{x}_{\mathbf{2}}\mathbf{-}\frac{\mathbf{f}\left( \mathbf{x}_{\mathbf{1}} \right)}{\mathbf{f}^{\mathbf{'}}\left( \mathbf{x}_{\mathbf{1}} \right)} = \mathbf{2,}\mathbf{09} - \frac{- 0,05}{11,10} = \mathbf{2,}\mathbf{094505}$$
|