$\alpha = \frac{1}{2}\operatorname{}\frac{2m_{\text{xy}}}{m_{x}^{2} - m_{y}^{2}}$***$A = \sqrt{m_{x}^{2}{(\cos\alpha)}^{2} + m_{\text{xy}}\sin{2\alpha} + m_{y}^{2}{(\sin\alpha)}^{2}}$
$$B = \sqrt{m_{x}^{2}{(\sin\alpha)}^{2} - m_{\text{xy}}\sin{2\alpha} + m_{y}^{2}{(\cos\alpha)}^{2}}$$
$$\overset{\overline{}}{x} = x_{0} + \frac{\sum_{}^{}{L}}{n}.L = L_{i} - x_{0}*V_{i} = \overset{\overline{}}{x} - L_{i}*m_{0} = \sqrt{\frac{\sum_{}^{}V^{2}}{n - 1}}*m_{\overset{\overline{}}{x}} = \sqrt{\frac{\sum_{}^{}V^{2}}{n(n - 1)}}$$
$${P_{i} = \frac{m_{0}^{2}}{m_{i}^{2}}*\overset{\overline{}}{x} = x_{0} + \frac{\sum_{}^{}{{(P}_{i}L})}{\sum_{}^{}P_{i}}*L = L_{i} - x_{0}*V_{i} = \overset{\overline{}}{x} - L_{i}\backslash n}{m_{0} = \sqrt{\frac{\sum_{}^{}{{(P_{i}V}^{2})}}{n - 1}}*m_{\overset{\overline{}}{x}} = \frac{m_{0}}{\sqrt{\sum_{}^{}P_{i}}}}$$