3.2. Żebro Ż-2
3.2.1. Schemat statyczny
a1 = min{ 0,5h; 0,5t } = 0,5t = 0,5 * 250 = 125 mm = 0,125 m
a2 = min{ 0,5h; 0,5t } = 0,5t = 0,5 * 350 = 175 mm = 0,175 m
ln1 = 5 - 0,125 - 0,175 = 4,7 m
ln2 = 6 – 2 * 0,175= 5,65 m
leff,1 = ln1 + a1 +a2 = 4,7 + 0,125 + 0,175= 5 m
leff,2 = ln2 + 2*a2 = 5,65 + 2*0,175 = 6 m
3.2.2. Zestawienie obciążeń
gk = gkpl • b + c.wlasny zebra + c.wlasny tynku = 4, 502 • 2, 46 + 0, 25 • 0, 35 • 25 + 2 • 0, 35 • 0, 01 = 13, 269 kN/m
qk = qkpl • b = 7, 5 • 2, 46 = 18, 45 kN/m
SGN
1,35 gk + 1,5 qk – max
1 gk – min
g = 1,0 gk – stałe
q = 0,35 gk + 1,5 qk – zmienne
gk • 1, 35 = 17, 913 kN/m
qk • 1, 5 = 27, 675 kN/m
SGU
g = gk – stałe
q = Ψ2* qk – zmienne
qk • 0, 8 = 14, 76 kN/m
3.2.4. Wymiarowanie na zginanie
Efektywna szerokość półek
b = 0, 25 + 0, 5 • (1,7+2,21) = 2, 2 m
b1 = 0, 5 • 1, 7 = 0, 85 m
b2 = 0, 5 • 2, 21 = 1, 105 m
Dla przęsła pierwszego
l0 = 0, 85 • leff1 = 0, 85 • 5 = 4, 25 m
0, 2 • l0 = 0, 2 • 4, 25 = 0, 85 m
beff, 1 = 0, 2b1 + 0, 1 • l0 = 0, 2 • 0, 85 + 0, 1 • 4, 25 = 0, 6 m
beff, 1 ≤ 0, 2 • l0; b1; 6 • hf
0, 6 m ≤ 0, 85 m; 0, 85 m; 0, 72 m Warunek spełniony, więc beff, 1=0, 6 m
beff, 2 = 0, 2b2 + 0, 1 • l0 = 0, 2 • 1, 105 + 0, 1 • 4, 25 = 0, 65 m
beff, 2 ≤ 0, 2 • l0; b2; 6 • hf
0, 6 m ≤ 0, 85 m; 1, 105 m; 0, 72 m Warunek spełniony, więc beff, 2=0, 65 m
beff = beff, 1 + bw + beff, 2 = 0, 6 + 0, 25 + 0, 65 = 1, 5 m
beff=1, 5 m
Dla przęsła drugiego
l0 = 0, 7 • leff2 = 0, 7 • 6 = 4, 2 m
0, 2 • l0 = 0, 2 • 4, 2 = 0, 84 m
beff, 1 = 0, 2b1 + 0, 1 • l0 = 0, 2 • 0, 85 + 0, 1 • 4, 2 = 0, 59 m
beff, 1 ≤ 0, 2 • l0; b1; 6 • hf
0, 6 m ≤ 0, 85 m; 0, 85 m; 0, 72 m Warunek spełniony, więc beff, 1=0, 59 m
beff, 2 = 0, 2b2 + 0, 1 • l0 = 0, 2 • 1, 105 + 0, 1 • 4, 2 = 0, 64 m
beff, 2 ≤ 0, 2 • l0; b2; 6 • hf
0, 6 m ≤ 0, 84 m; 1, 105 m; 0, 72 m Warunek spełniony, więc beff, 2=0, 64 m
beff = beff, 1 + bw + beff, 2 = 0, 59 + 0, 25 + 0, 64 = 1, 48 m
beff=1, 5 m
Dla podpory B
l0 = 0, 15 • (leff1+leff2) = 0, 15 • (5+6) = 1, 65
0, 2 • l0 = 0, 2 • 1, 65 = 0, 33 m
beff, 1 = 0, 2b1 + 0, 1 • l0 = 0, 2 • 0, 85 + 0, 1 • 1, 65 = 0, 34 m
beff, 1 ≤ 0, 2 • l0; b1; 6 • hf
0, 34 m ≤ 0, 33 m; 0, 85 m; 0, 72 m beff, 1=0,33 m
beff, 2 = 0, 2b2 + 0, 1 • l0 = 0, 2 • 1, 105 + 0, 1 • 1, 65 = 0, 386 m
beff, 2 ≤ 0, 2 • l0; b2; 6 • hf
0, 386 m ≤ 0, 33 m; 1, 105 m; 0, 72 m Warunek spełniony, więc beff, 2=0,33 m
beff = beff, 1 + bw + beff, 2 = 0, 33 + 0, 25 + 0, 33 = 0, 91 m
beff=0, 91 m
Dla podpory C
l0 = 0, 15 • (leff1+leff2) = 0, 15 • (6+6) = 1, 8
0, 2 • l0 = 0, 2 • 1, 8 = 0, 38 m
beff, 1 = 0, 2b1 + 0, 1 • l0 = 0, 2 • 0, 85 + 0, 1 • 1, 8 = 0, 35 m
beff, 1 ≤ 0, 2 • l0; b1; 6 • hf
0, 35 m ≤ 0, 36 m; 0, 85 m; 0, 72 m beff, 1=0, 35 m
beff, 2 = 0, 2b2 + 0, 1 • l0 = 0, 2 • 1, 105 + 0, 1 • 1, 8 = 0, 401 m
beff, 2 ≤ 0, 2 • l0; b2; 6 • hf
0, 401 m ≤ 0, 36 m; 1, 105 m; 0, 72 m Warunek spełniony, więc beff, 2=0, 36 m
beff = beff, 1 + bw + beff, 2 = 0, 35 + 0, 25 + 0, 36 = 0, 96 m
beff=0, 96 m
Klasa ekspozycji : XC2
Klasa konstrukcji : S4
Moment w przęśle 1
M1 = 100, 947kN
beff = 1, 5 m
$$A = \frac{M_{\text{Ed}}}{b \bullet d^{2} \bullet f_{\text{cd}}} = \frac{100,947}{1,5 \bullet {0,42}^{2} \bullet 17860} = 0,0214m^{2}$$
$$\zeta_{\text{eff}}^{} = 1 - \sqrt{1 - 2A} = 1 - \sqrt{1 - 2 \bullet 0,0214} = 0,0216 < \zeta_{eff,lim} = 0,5$$
$\rho = \frac{f_{\text{cd}}}{f_{\text{yd}}} \bullet \zeta_{\text{eff}} = \frac{17,86}{420} \bullet 0,0216 = 0,000919 = 0,092\%$
As1 = ρ • beff • d = 0, 000919 • 1, 5 • 0, 42 = 0, 000579m2 = 5, 79 cm2
As.min=
$$A_{\text{s.min}} = \max\left\{ 0,26 \bullet \frac{2,2}{20} \bullet 1,5 \bullet 0,42;0,0013 \bullet 1,5 \bullet 0,42 \right\} = \max\left( 0,00018;0,000819 \right) = 8,19cm^{2}$$
As1 < As.min
A wiec przyjmuję As1, 1 = 8, 19 cm2
Moment w przęśle 2
M1 = 102, 218 kN
beff = 1, 5 m
$$A = \frac{M_{\text{Ed}}}{b \bullet d^{2} \bullet f_{\text{cd}}} = \frac{102,218}{1,5 \bullet {0,42}^{2} \bullet 17860} = 0,0216\ m^{2}$$
$$\zeta_{\text{eff}}^{} = 1 - \sqrt{1 - 2A} = 1 - \sqrt{1 - 2 \bullet 0,0216} = 0,0218 < \zeta_{eff,lim} = 0,5$$
$\rho = \frac{f_{\text{cd}}}{f_{\text{yd}}} \bullet \zeta_{\text{eff}} = \frac{17,86}{420} \bullet 0,0218 = 0,000927 = 0,093\%$
As1 = ρ • beff • d = 0, 000927 • 1, 5 • 0, 42 = 0, 000584m2 = 5, 84 cm2
As.min=
$$A_{\text{s.min}} = \max\left\{ 0,26 \bullet \frac{2,2}{20} \bullet 1,5 \bullet 0,42;0,0013 \bullet 1,5 \bullet 0,42 \right\} = \max\left( 0,00018;0,000819 \right) = 8,19cm^{2}$$
As1 < As.min
A wiec przyjmuję As1, 2 = 8, 19 cm2
Moment w podporze B
M1 = 154, 064 kN
beff = 0, 91 m
$$A = \frac{M_{\text{Ed}}}{b \bullet d^{2} \bullet f_{\text{cd}}} = \frac{154,064}{0,91 \bullet {0,42}^{2} \bullet 17860} = 0,0538\ m^{2}$$
$$\zeta_{\text{eff}}^{} = 1 - \sqrt{1 - 2A} = 1 - \sqrt{1 - 2 \bullet 0,0538} = 0,0553 < \zeta_{eff,lim} = 0,5$$
$\rho = \frac{f_{\text{cd}}}{f_{\text{yd}}} \bullet \zeta_{\text{eff}} = \frac{17,86}{420} \bullet 0,0553 = 0,00235 = 0,24\%$
As1 = ρ • beff • d = 0, 00235 • 0, 91 • 0, 42 = 0, 000898m2 = 8, 98cm2
As.min=
$$A_{\text{s.min}} = \max\left\{ 0,26 \bullet \frac{2,2}{20} \bullet 0,91 \bullet 0,42;0,0013 \bullet 0,91 \bullet 0,42 \right\} = \max\left( 0,00022;0,000497 \right) = 4,97cm^{2}$$
As1 > As.min
A wiec przyjmuję As1, B = 8, 98 cm2
Moment w podporze C
M1 = 158, 023 kN
beff = 0, 96 m
$$A = \frac{M_{\text{Ed}}}{b \bullet d^{2} \bullet f_{\text{cd}}} = \frac{158,023}{0,966 \bullet {0,42}^{2} \bullet 17860} = 0,0519\ m^{2}$$
$$\zeta_{\text{eff}}^{} = 1 - \sqrt{1 - 2A} = 1 - \sqrt{1 - 2 \bullet 0,0519} = 0,0533 < \zeta_{eff,lim} = 0,5$$
$\rho = \frac{f_{\text{cd}}}{f_{\text{yd}}} \bullet \zeta_{\text{eff}} = \frac{17,86}{420} \bullet 0,0533 = 0,00227 = 0,23\%$
As1 = ρ • beff • d = 0, 00227 • 0, 96 • 0, 42 = 0, 000915m2 = 9, 15cm2
As.min=
$$A_{\text{s.min}} = \max\left\{ 0,26 \bullet \frac{2,2}{20} \bullet 0,91 \bullet 0,42;0,0013 \bullet 0,91 \bullet 0,42 \right\} = \max\left( 0,00022;0,000497 \right) = 4,97cm^{2}$$
As1 > As.min
A wiec przyjmuję As1, B = 9, 15 cm2
Dobór zbrojenia
As1 [cm2] | Zbrojenie | |
---|---|---|
M1 = 100,947 [kNm] | 8,19 | 3 Φ20 A = 9,42 cm2 |
M2 = 102,218 [kNm] | 8,19 | 3 Φ20 A = 9,42 cm2 |
MB = 154,064 [kNm] | 8,98 | 2 Φ20 + 3 Φ12 A = 6,28+3,39=9,67 cm2 |
MC = 158,023 [kNm] | 9,15 | 2 Φ20 + 3 Φ12 A = 6,28+3,39=9,67 cm2 |
3.2.5. Wymiarowanie na ścinanie
3.2.5.1. Obliczenia nośności na ścinanie elementu bez zbrojenia na ścinanie
Podpora skrajna
$$V_{Rd,c} = C_{Rd,c} \bullet k \bullet \left( 100\rho_{L} \bullet f_{\text{ck}} \right)^{\frac{1}{3}} \bullet b_{w} \bullet d$$
$$C_{Rd,c} = \frac{0,18}{\gamma_{c}} = 0,13$$
$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{420}} = 1,69 < 2$$
$$\rho_{L} = \frac{A_{\text{SL}}}{b_{w} \bullet d} = \frac{3,39}{25 \bullet 42} = 0,00323 < 0,02$$
$$V_{Rd,c} = 0,13 \bullet 1,69 \bullet \left( 100 \bullet 0,00323 \bullet 20 \right)^{\frac{1}{3}} \bullet 250 \bullet 420 = 429,63\ kN$$
VRd, c ≥ υmin • bw • d = 0, 035 • k2/3 • fck1/2 • bw • d = 0, 035 • 1, 692/3 • 201/2 • 250 • 420 = 233, 18 kN
VRd, c = 429, 63 kN