projekt Mining andμonomy

Mine Planning Project

AHG University of science and Technology

Faculty of Mining and Geoengineering

Department of Economics and Management in Industry

Planned by

XYZ

Individual input data no. : 22

No. Name Unit Value
1 Length of coalfield along strike, Ls [m] 4000
2 Horizon depth, H [m] 700
3 Horizon interval, h [m] 150
4 Single longwall saleable daily production, Sld [Mg/d] 7000
5 Overall productivity, P0 [Mg/emp/a] 800

Contents:

  1. Introduction

  2. Mine model layout

  3. Reserves estimation

  4. Mine construction schedule

  5. Mine production schedule

  6. CAPEX estimation

  7. OPEX estimation

  8. Evaluation of mine planning project efficiency

  9. Sensitivity analysis

  10. Summary – basic technical and economical parameters

Ad I

Introductory information and data:

Enterprise:

Method of mining:

Dip angle of deposit, Ξ± [degrees]:

Number of seams:

Thickness of seam I:

Thickness of seam II:

Thickness of seam III:

Distance between seam floors:

Methane emission:

Water inflow:

Number of longwalls, m:

Number of working days, Ns [d/a]:

underground hard coal mine

longwall caving

5

4 (enumerated: I, II, III)

3 [m]

3 [m]

4 [m]

20 [m]

11 [m3/Mg]

3 [m3/min]

2

250

Annual saleable production from longwalls, Se [MMg/a]:


$$S_{e} = 10^{- 6}nS_{\text{ld}}N_{d} = \ 10^{- 6}*2*7000*250 = \mathbf{3,5}\ \lbrack\frac{\text{MMg}}{a}\rbrack$$

Annual saleable production from development workings, Sd [MMg/a]:


$$S_{d} = 0,1S_{e} = 0,1*3,5 = \mathbf{0,35\ }\lbrack\frac{\text{MMg}}{a}\rbrack$$

Annual saleable production of the mine, S [MMg/a]:


$$S = \ S_{e}*S_{d} = 3,5 + 0,35 = \mathbf{3,85}\ \lbrack\frac{\text{MMg}}{a}\rbrack$$

Overall manpower, N [man]:


$$N = \ \frac{10^{6}S}{P_{0}} = \ \frac{10^{6}*3,85}{800} = 4812,5\ \sim\mathbf{4813}\ \left\lbrack \text{man} \right\rbrack$$

Underground manpower, Nu [man]:


Nu = 0, 8N = 0, 8β€…*β€…4813 = 3850Β [man]

Surface manpower, Ns [man]:


Ns = 0, 2N = 0, 2β€…*β€…4813 = 963Β [ man]


u = 0, 8

Daily run-of-mine production, Wd [ThMg/d]:


$$W_{d} = \ \frac{1000S}{uN_{d}} = \frac{1000*3,85}{0,8*250} = \mathbf{19,25}\ \left\lbrack \frac{\text{ThMg}}{d} \right\rbrack$$

Underground productivity, Pu [Mg/man/d]:


$$P_{u} = \frac{1000W_{d}}{N_{u}} = \ \frac{1000*19,25}{3850} = \mathbf{5}\ \lbrack\frac{\frac{\text{Mg}}{\text{man}}}{d}\rbrack$$

Ad II

Mine model layout

  1. Main shaft

  2. Pit bottom of main shaft

  3. Main transportation crosscut

  4. Main transportation drift

  5. Inclined drift

  6. Main ventilation drift

  7. Ventilation blind pit

  8. Main ventilation crosscut

  9. Pit bottom of air shaft

  10. Air shaft

Main shaft depth, Dms [m]:


Dms = Hβ€…+β€…20 = 700β€…+β€…20 = 720Β [m]

Ait shaft depth, Das [m]:


Das = Hβ€…βˆ’β€…hβ€…+β€…10 = 700β€…βˆ’β€…150β€…+β€…10 = 560Β [m]

Ad III

Reserves estimation

Seam number

Area

[m2]

Thickness

[m]

Volume

[Mm3]

Density

[Mg/m3]

Proved reserves

[MMg]

Coefficient

Ξ·av

Saleable reserves

[MMg]

I 6 884 240 3 20,653 1,3 26,849 0,6 16,109
II 5 966 320 3 17,899 1,3 23,269 0,6 13,961
III 5 048 440 4 20,194 1,3 26,252 0,6 15,751
Total 17899000 10 58,74544 76,369 45,821

Area – calculated for every seam by multiplication of coal field length along strike by coal strike seam length along dip.

As you can see to calculate area for every seam we need to find x – coal strike seam length along dip.


$$\sin 5 = \ \frac{h_{\text{si}}}{x_{i}}\ \rightarrow x_{i} = \ \frac{h_{\text{si}}}{\sin 5}$$

For seam I:


hs1 = 150[m]


$$x_{1} = \frac{h_{s1}}{\sin 5} = \ \frac{150}{\sin 5} \approx 1\ 712,06\lbrack m\rbrack$$


areaΒ forΒ seamΒ numberΒ I = Hβ€…*β€…Β x1 = 4000β€…*β€…Β 1Β 721, 06 = 6Β 884Β 240[m2]Β 

For seam II:


hs2 = 150β€…βˆ’β€…20 = 130Β [m]


$$x_{2} = \frac{h_{s2}}{\sin 5} = \ \frac{130}{\sin 5} \approx 1\ 491,58\lbrack m\rbrack$$


areaΒ forΒ seamΒ numberΒ II = Hβ€…*β€…Β x2 = 4000β€…*β€…1Β 491, 58  = 5Β 966Β 320Β [m2]Β 

For seam III:


hs3 = 130β€…βˆ’β€…20 = 110Β [m]


$$x_{3} = \frac{h_{s3}}{\sin 5} = \ \frac{110}{\sin 5} \approx 1\ 262,11\lbrack m\rbrack$$


areaΒ forΒ seamΒ numberΒ III = Hβ€…*β€…Β x3 = 4000β€…*β€…1Β 262, 11  = 5Β 048Β 440Β [m2]Β 

Average coefficient of reserves recovery , Ξ·av; let Ξ·av = 0,6

Index of useful capacity of deposit, Zu [Mg/m2]:


$$Z_{u} = \ \frac{1,3*\sum_{}^{}m_{i}}{\cos \propto}\eta_{\text{av}} = \ \frac{1,3*(3 + 3 + 4\ )}{\cos 5}*0,6 = \mathbf{7,83\ }\lbrack\frac{\text{Mg}}{m^{2}}\rbrack\ $$

Where:

mi – I-th seam thickness [m],

Ξ± – dip angle [degrees]

Ad IV

No Name Unit Depth/Length Driving through Rate of advance [m/mth]

Time

[mth]

1 Preparatory workings before main shaft sinking 6
2 Main shaft sinking (1) [m] 720 stone 60 12
3 Main shaft pit bottom inlet stone 3
4 Driving the main transportation crosscut (3) [m] 50 stone 50 1
5 Crossing (3/4L) [m] stone/coal 0,25
6 Driving the main transportation drift (4L) [m] 1000 coal 150 6,7
7 Crossing (4L/5L) [m] coal 0,25
8 Driving the inclined drift I (5L) [m] 1720 coal 120 14,3
9 Crossing (5L/6L) [m] coal 0,25
10 Preparatory workings before air shaft sinking 4
11 Air shaft sinking (10) [m] 560 stone 60 9,3
12 Air shaft pit bottom inlet stone 2
13 Driving the main ventilation crosscut (8) [m] 50 stone 50 1
14 Crossing (8/6L) [m] stone/coal 0,25
15 Driving the main ventilation drift (6L) [m] 1000 coal 150 6,7
16 Driving the main panel entry for longwall I [m] 1000 coal 200 5
17 Driving the tail panel entry for longwall I [m] 1000 coal 200 5
18 Driving the set-up entry for longwall I [m] 300 coal 100 3
19 Longwall I face equipment installation 3
20 Start up of longwall I extraction
21 Driving the main transportation drift (4R) [m] 1000 coal 150 6,7
22 Crossing (4R/5R) [m] coal 0,25
23 Driving the inclined drift II (5R) [m] 1720 coal 120 14,3
24 Driving the main ventilation drift (6R) [m] 1000 coal 150 6,7
25 Crossing (5R/6R) [m] coal 0,25
26 Driving the main panel entry for longwall II [m] 1000 coal 200 5
27 Driving the tail panel entry for longwall II [m] 1000 coal 200 5
28 Driving the set-up entry for longwall II [m] 300 coal 100 3
29 Longwall II face equipment installation 3
30 Start up of longwall II extraction

Mine construction schedule

Ad V

Mine production schedule

Seam number

Saleable reserves

[MMg]

Annual saleable production

[MMg/year]

Production period

[years]

I 16,109 3,85 4,2
II 13,961 3,85 3,6
III 15,751 3,85 4,1

Years:

Ad VI

  1. Underground part

  1. Expenditure on shaft sinking, Iu1 [MPLN]

No Specification Drive through Size

Unit cost

[ThPLN/unit]

Total

[MPLN]

unit amount
1 Main shaft sinking (1) stone [m] 720 340
2 Driving the main shaft pit bottom inlet stone 1
3 Air shaft sinking (10) stone [m] 560 250
4 Driving air shaft pit bottom inlet stone 1
Total 386,8
  1. Expenditure on driving main development openings, Iu2 [MPLN]

No Specification Drive through Size Unit costs [ThPLN/unit] Total [MPLN]
Unit Amount
1 Driving the main cross transportation opening (3) stone [m] 50 25
2 Crossing (3/4L) stone/coal [m]
3 Driving the main transportation drift (4L) coal [m] 1000 15
4 Crossing (4L/5L) coal [m]
5 Driving the inclined drift I (5L) coal [m] 1720 12
6 Crossing (5L/6L) coal [m]
7 Driving the main cross ventilation opening (8) stone [m] 50 25
8 Crossing (8/6L) stone/coal [m]
9 Driving the main ventilation drift (6L) coal [m] 1000 15
10 Driving the main longwall I panel entry coal [m] 1000 10
11 Driving the tail longwall I panel entry coal [m] 1000 10
12 Driving the set-up entry for longwall I coal [m] 300 15
13 Driving the main transportation drift (4R) coal [m] 1000 15
14 Crossing (4R/5R) coal [m]
15 Driving the inclined drift II (5R) coal [m] 1720 12
16 Driving the main ventilation drift (6R) coal [m] 1000 15
17 Crossing (5R/6R) coal [m]
18 Driving the main longwall II panel entry coal [m] 1000 10
19 Driving the tail longwall II panel entry coal [m] 1000 10
20 Driving the set-up entry for longwall II coal [m] 300 15
Total 153,08
  1. Expenditure on driving pump room and other chambers at pit bottoms, Iu3 [MPLN]


$$I_{u3} = aW_{d} + b + c\sqrt{Q_{w}} + dQ_{w} = 4,73*19,25 + 7,7 + 2,1\sqrt{3} + 2,7*3 = \ \mathbf{110,49}\ \lbrack MPLN\rbrack$$

where:

Wd – daily run-of-mine productions [ThMg/d]

Qw – natural water inflowe in the mine [m3/min]

For the gassy mine without water problems: a=4,73; b=7,7; c=2,1; d=2,7

  1. Expenditure on underground equipment (in gassy mine), Iu4 [MPLN]


$$I_{u4} = \left( \frac{40,5}{Z_{u}} + 16,2 \right)W_{d} = \left( \frac{40,5}{7,83} + 16,2 \right)*19,25 = \mathbf{411,42\ }\ \lbrack MPLN\rbrack$$

where:

Zu – index od useful capacity of deposit [Mg/m2]

  1. Expenditure on mechanization and automation (for gassy mine), Iu5 [MPLN]


Iu5 = 6, 9Wdβ€…+β€…31, 5 = 6, 9β€…*β€…19, 25β€…+β€…31, 5 = 164, 33Β [MPLN]

where:

Wd – daily run-of-mine productions [ThMg/d]

Total expenditure on underground workings:


$$I_{u} = \ \sum_{i = 1}^{i = 5}{I_{\text{ui}} = 386,8 + 153,08 + 110,49 + 411,12 + 164,33 = \mathbf{1226,12}\ \left\lbrack \text{MPLN} \right\rbrack\ }$$

  1. Surface part:

  1. Expenditures on surface installations (e.g. winding installations, shaft head gear settings, construction of winding machine, processing plant, housing and other pit top buildings, etc.), Is1 [MPLN]


Is1 = 54Β [MPLN]

  1. Expenditure for surface coal processing and handling installations, Is2 [MPLN]


Is2 = 0, 45Wd(VjbKjb+CmKjm+MmKjs) = 0, 45β€…*β€…19, 25(140*0,15+3,4*8,4+6*2,4) =  554, 05Β [MPLN]

where:

Wd – daily run-of-mine productions [ThMg/d]

Vjb – processing/coal handling capacity of plant [m3/Mg/h]

Kjb – unit cost per m3 plant capacity [PLN/m3/Mg/h]

Cm – capacity od the coal handling machinery [Mg/Mg/h]

Kjm – unit costs of installation of processing machinery [PLN/(Mg/Mg/h)]

Mm – installed power of the processing plant [kW/Mg/h]

Kjs – unit costs of the installed power [MPLN/(kW/Mg/h)]

Let: Vjb=140; Kjb=0,15; Cm=3,4; Kjm=8,4; Mm=6; Kjs=2,4

  1. Expenditure for preparation of mine stockyard and its fencing, Is3 [MPLN]


Is3 = aLbβ€…+β€…brβ€…+β€…cnzβ€…+β€…dFβ€…+β€…eβ€…+β€…5, 25 = 0, 45β€…*β€…0, 45β€…+β€…0, 1β€…*β€…20β€…+β€…0, 4β€…*β€…11β€…+β€…0, 45β€…*β€…12β€…+β€…0, 45β€…+β€…5, 25 =  17, 7Β [MPLN]

where:

Lb – length of railway truck in mine stockyard area [km]

r – number of railway crossing in mine stockyard area,

nz – number of loading track for coal,

F – surface area of the mine stockyard [ha]

Let: Lb=0,45; r=20; a=0,45; b=0,1; c=0,4; nz=11; d=0,45; e=0,45; F=12

  1. Expenditure for installation of hydraulic backfilling, Is4 [MPLN]

No need for backfilling


Is4 = 0Β 

  1. Expenditure of the main ventilation infrastructure, Is5 [MPLN]


Is5 = (bp+0,0065qm)Wdβ€…+β€…10, 2Swβ€…+β€…1, 5Sxβ€…+β€…13, 5nm = (0,99+0,0065*6,6)β€…*β€…19, 25β€…+β€…10, 2β€…*β€…1β€…+β€…1, 5β€…*β€…1β€…+β€…13, 5β€…*β€…1 = 45, 08Β [MPLN]

where:

bp –coefficient, bp=0,09*qs β†’ bp=0,99

qs – volume of methane emission per Mg of coal extracted [m3/Mg]

qm – yield of gas from methane emission points [m3/Mg]

Sw – number of exhaust ventilation shafts

Sx – number of intake ventilation shafts

Nm – number of methane emission points = number of exhaust shafts

Let: qs=11; qm=6,6; Sw=1; Sx=1; Nm=1

  1. Expenditure on the installation of electric energy supply infrastructure, Is6 [MPLN]


Is6 = 12, 2Β [MPLN]

  1. Expenditure on the compressed air supply system, Is7 [MPLN]


Is7 = 1, 47Wdβ€…+β€…2, 25ns1 = 1, 47β€…*β€…19, 25β€…+β€…2, 25β€…*β€…1 = 30, 55Β [MPLN]

where:

ns1 – number of compressed air stations = number of winding shafts = 1

  1. Expenditure for hot water supply system, Is8 [MPLN]


$$I_{s8} = \left( \frac{a}{P_{u}} + b \right)W_{d} + c = \left( \frac{2,5}{5} + 0,7 \right)*19,25 + 8 = \ \mathbf{31,1}\ \lbrack MPLN\rbrack$$

where:

Wd – as above

Pu – underground productivity [Mg/emp/d]

a, b, c – coefficients depending upon the supply model; for the projected mine model:

a=2,5; b=0,7; c=8

  1. Expenditure on the constructions of administrative buildings and installation of telecommunication network, Is9 [MPLN]


$$I_{s9} = \left( \frac{1,83}{P_{u}} + 0,13 \right)W_{d} + 3,8 = \left( \frac{1,83}{5} + 0,13 \right)*19,25 + 3,8 = \mathbf{13,35}\ \lbrack MPLN\rbrack$$

where:

Wd – as above

  1. Expenditure on the supply centers, workshops and storage yards and narrow gauge track layout for mine, Is10 [MPLN]


Is10 = 2, 4Wdβ€…+β€…2, 63 = 2, 4β€…*β€…19, 25β€…+β€…2, 63 = 48, 83Β [MPLN]

where:

Wd – as above

  1. Expenditure on the mine premises preparation, land work, area protection and fencing, Is11 [MPLN]


Is11 = 16, 5Β [MPLN]

  1. Cost budgeting for mine development construction, Is12 [MPLN]


Is12 = 0, 4Iu2 = 0, 4β€…*β€…153, 08 = 61, 23Β [MPLN]

where:

Iu2 – expenditure on main development openings [MPLN]

  1. Reserve fund for unexpected expenditure, Is13 [MPLN]


$$I_{s13} = 0,1\left( I_{u} + \sum_{i = 1}^{i = 12}I_{\text{si}} \right) = 0,1\left( 1226,12 + 884,6 \right) = \ \mathbf{211,07}\ \lbrack MPLN\rbrack$$

where:

Iu – total expenditure for underground mine development [MPLN]

  1. Total expenditure on surface workings, Is [MPLN]


$$I_{s} = \ \sum_{i = 1}^{i - 13}I_{\text{si}} = \ \mathbf{1095,67}\ \lbrack MPLN\rbrack$$

  1. Total CAPEX – total expenditure (underground and surface), I [MPLN]


I = Iuβ€…+β€…Is = 1226, 12β€…+β€…Β 1095, 67  = 2321, 78Β [MPLN]

  1. Calculation of annual amortization, Aan [MPLN/a]


$$A_{\text{an}} = \ \frac{I}{t_{\text{av}}} = \frac{2321,78}{18} = \mathbf{128,99\ }\lbrack\frac{\text{MPLN}}{a}\rbrack$$

where:

tav – average period of influence of the mine assets, tav = 18 years

  1. Calculation of unit amortization, a [PLN/Mg]


$$a = \frac{A_{\text{an}}}{S} = \frac{128,99}{3,85} = \mathbf{33,50}\ \lbrack\frac{\text{PLN}}{\text{Mg}}\rbrack$$

where:

S – annual saleable production of the mine [MPLN/a]

Ad VII

Annual operating cost specification

ld Cost specification

Fixed

[MPLN/a]

Variable

[MPLN/a]

Total

[MPLN/a]

Unit cost

[PLN/Mg]

1 Amortization 128,99 128,99 33,50
2 Materials 25,70 82,78 108,48 28,18
3 Energy 37,40 27,72 65,12 16,91
4 Equipment lease and rental 10,80 10,80 2,81
5 Drilling and mining services 7,10 55,83 62,93 16,34
6 Methane drainage services 3,00 23,49 26,49 6,88
7 Mining damage services 12,00 12,00 3,12
8 Other mining services 5,00 10,40 15,40 4,00
9 Repair services 25,00 15,40 40,40 10,49
10 Transport services 3,80 13,48 17,28 4,49
11 Other services 10,00 3,47 13,47 3,50
12 Labor costs 577,50 577,50 150,00
13 Welfare securities 117,81 117,81 30,60
14 Union benefits 45,05 45,05 11,70
15 Real property tax 7,65 7,65 1,99
16 Royalties 0,08 0,08 0,02
17 Environment charge 0,04 0,04 0,01
18 PFRON charge 3,10 3,10 0,81
19 Other taxes and charges 0,42 0,42 0,11
20 Insurances 4,60 4,60 1,19
21 Total production cost 1024,91 232,67 1257,58 326,64
22 Cost of sales 251,52 65,33
23 Total operating cost 1509,10 391,97
24 Cos minus amortization 1380,11 358,47

where:

S – annual saleable production of the mine [MMg/a], S=3,85

To point 12. let average annual salary is equal to 0,12 [MPLN/a] , N-manpower = 4813

Ad VIII

Evaluation of mine planning project efficiency

Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Discount coefficient, at 1 0,91 0,83 0,75 0,68 0,62 0,56 0,51 0,47 0,42 0,39 0,35 0,32 0,29 0,26 0,24 0,22 0,20 0,18 0,16
Annual sales, St [MMg/year] 0,77 1,93 2,31 3,85 3,85 3,85 3,85 3,85 3,85 3,85 3,85 3,85 3,85 3,85 3,85 3,85
Average coal price, Pt [PLN/Mg] 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450
Revenues, Rt [MPLN/year] 346,5 866,25 1039,5 1732,5 1732,5 1732,5 1732,5 1732,5 1732,5 1732,5 1732,5 1732,5 1732,5 1732,5 1732,5 1732,5
Annual cost, Ct [MPLN/year] 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11 1380,11
Investments, It [MPLN/year] 110,56 221,12 331,68 442,24 663,37 331,68 221,12
Inventories, Bt [MPLN/year] 65 65 -130
Capital expenditures, Nt=It+Bt 110,56 221,12 331,68 442,24 728,37 331,68 286,12 -130
Rt-Ct -1033,61 -513,86 -427,23 352,39 352,39 352,39 352,39 352,39 352,39 352,39 352,39 352,39 352,39 352,39 352,39 352,39
at(Rt-Ct) -705,97 -319,07 -241,16 180,83 164,39 149,45 135,86 123,51 112,28 102,08 92,80 84,36 76,69 69,72 63,38 57,62
atNt 110,56 201,02 274,12 332,26 497,48 205,95 161,51 -21,26
at(Rt-Ct-Nt) -110,56 -201,02 -274,12 -332,26 -1203,45 -525,01 -402,67 180,83 164,39 149,45 135,86 123,51 112,28 102,08 92,80 84,36 76,69 69,72 63,38 78,87

where:

at = (1β€…+β€…r)βˆ’t

r – discount rate, r=0,1

Ad IX

Criteria:


$$NPV = \sum_{t = 0}^{t = 19}{a_{t}\left( R_{t} - C_{t} - N_{t} \right)} = \ - 1614,88$$

I didn’t calculate IRR because NPVβ‰ 0

Sensitivity analysis for criteria NPV

% Average coal price NPV %NPV
-10 405 -2440,79 -0,51
-5 427,5 -2027,83 -0,26
0 450 -1614,88 0,00
5 477,5 -1110,15 0,31
10 495 -788,96 0,51
% CAPEX NPV %NPV
-10 2089,606075 -1444,69 0,11
-5 2205,695302 -1529,78 0,05
0 2321,784528 -1614,88 0,00
5 2437,873755 -1699,97 -0,05
10 2553,962981 -1785,06 -0,11
% Annual operating cost NPV %NPV
-10 1242,097259 -803,64 0,50
-5 1311,102663 -1209,26 0,25
0 1380,11 -1614,88 0,00
5 1449,113469 -2020,49 -0,25
10 1518,118872 -2426,11 -0,50

Ad X

Summary:

  1. Reserves:

  1. Number of seams: 3

  2. Number of shafts: 2

  3. Horizon depth: 700 [m]

  4. Horizon interval: 150 [m]

  5. Number of longwalls: 2

  6. Annual saleable production: 3,85 [MMg/a]

  7. Overall manpower: 4813 [man]

  8. Underground manpower: 3850 [man]

  9. Overall productivity: 800 [Mg/emp/a]

  10. Underground productivity: 5 [ Mg/man/d]

  11. Daily run-of-mine production: 19,25 [ThMg/d]

  12. CAPEX: 2321,78 [MPLN]

  13. OPEX – total: 1380,11[MPLN/a]

  14. NPV, IRR: NPV= -1614,88; I didn’t calculate IRR because NPVβ‰ 0

  15. Conclusions derived from sensitivity analysis:


Wyszukiwarka

Podobne podstrony:
Dodatkowe Wytyczne projektu, Data mining - Grzenda
projekt o narkomanii(1)
!!! ETAPY CYKLU PROJEKTU !!!id 455 ppt
WykΕ‚ad 3 Dokumentacja projektowa i STWiOR
Projekt nr 1piΔ…tek
Projet metoda projektu
34 Zasady projektowania strefy wjazdowej do wsi
PROJEKTOWANIE ERGONOMICZNE
Wykorzystanie modelu procesow w projektowaniu systemow informatycznych
Narzedzia wspomagajace zarzadzanie projektem
ZarzΔ…dzanie projektami 3
Metody Projektowania 2
BYT 109 D faza projektowania

wiΔ™cej podobnych podstron