Mine Planning Project
AHG University of science and Technology
Faculty of Mining and Geoengineering
Department of Economics and Management in Industry
Planned by
XYZ
Individual input data no. : 22
No. | Name | Unit | Value |
---|---|---|---|
1 | Length of coalfield along strike, Ls | [m] | 4000 |
2 | Horizon depth, H | [m] | 700 |
3 | Horizon interval, h | [m] | 150 |
4 | Single longwall saleable daily production, Sld | [Mg/d] | 7000 |
5 | Overall productivity, P0 | [Mg/emp/a] | 800 |
Contents:
Introduction
Mine model layout
Reserves estimation
Mine construction schedule
Mine production schedule
CAPEX estimation
OPEX estimation
Evaluation of mine planning project efficiency
Sensitivity analysis
Summary β basic technical and economical parameters
Ad I
Introductory information and data:
Enterprise:
Method of mining:
Dip angle of deposit, Ξ± [degrees]:
Number of seams:
Thickness of seam I:
Thickness of seam II:
Thickness of seam III:
Distance between seam floors:
Methane emission:
Water inflow:
Number of longwalls, m:
Number of working days, Ns [d/a]:
underground hard coal mine
longwall caving
5
4 (enumerated: I, II, III)
3 [m]
3 [m]
4 [m]
20 [m]
11 [m3/Mg]
3 [m3/min]
2
250
Annual saleable production from longwalls, Se [MMg/a]:
$$S_{e} = 10^{- 6}nS_{\text{ld}}N_{d} = \ 10^{- 6}*2*7000*250 = \mathbf{3,5}\ \lbrack\frac{\text{MMg}}{a}\rbrack$$
Annual saleable production from development workings, Sd [MMg/a]:
$$S_{d} = 0,1S_{e} = 0,1*3,5 = \mathbf{0,35\ }\lbrack\frac{\text{MMg}}{a}\rbrack$$
Annual saleable production of the mine, S [MMg/a]:
$$S = \ S_{e}*S_{d} = 3,5 + 0,35 = \mathbf{3,85}\ \lbrack\frac{\text{MMg}}{a}\rbrack$$
Overall manpower, N [man]:
$$N = \ \frac{10^{6}S}{P_{0}} = \ \frac{10^{6}*3,85}{800} = 4812,5\ \sim\mathbf{4813}\ \left\lbrack \text{man} \right\rbrack$$
Underground manpower, Nu [man]:
Nuβ=β0,β8Nβ=β0,β8β
*β
4813β=β3850Β [man]
Surface manpower, Ns [man]:
Nsβ=β0,β2Nβ=β0,β2β
*β
4813β=β963Β [ man]
uβ=β0,β8
Daily run-of-mine production, Wd [ThMg/d]:
$$W_{d} = \ \frac{1000S}{uN_{d}} = \frac{1000*3,85}{0,8*250} = \mathbf{19,25}\ \left\lbrack \frac{\text{ThMg}}{d} \right\rbrack$$
Underground productivity, Pu [Mg/man/d]:
$$P_{u} = \frac{1000W_{d}}{N_{u}} = \ \frac{1000*19,25}{3850} = \mathbf{5}\ \lbrack\frac{\frac{\text{Mg}}{\text{man}}}{d}\rbrack$$
Ad II
Mine model layout
Main shaft
Pit bottom of main shaft
Main transportation crosscut
Main transportation drift
Inclined drift
Main ventilation drift
Ventilation blind pit
Main ventilation crosscut
Pit bottom of air shaft
Air shaft
Main shaft depth, Dms [m]:
Dmsβ=βHβ
+β
20β=β700β
+β
20β=β720Β [m]
Ait shaft depth, Das [m]:
Dasβ=βHβ
ββ
hβ
+β
10β=β700β
ββ
150β
+β
10β=β560Β [m]
Ad III
Reserves estimation
Seam number | Area [m2] |
Thickness [m] |
Volume [Mm3] |
Density [Mg/m3] |
Proved reserves [MMg] |
Coefficient Ξ·av |
Saleable reserves [MMg] |
---|---|---|---|---|---|---|---|
I | 6 884 240 | 3 | 20,653 | 1,3 | 26,849 | 0,6 | 16,109 |
II | 5 966 320 | 3 | 17,899 | 1,3 | 23,269 | 0,6 | 13,961 |
III | 5 048 440 | 4 | 20,194 | 1,3 | 26,252 | 0,6 | 15,751 |
Total | 17899000 | 10 | 58,74544 | 76,369 | 45,821 |
Area β calculated for every seam by multiplication of coal field length along strike by coal strike seam length along dip.
As you can see to calculate area for every seam we need to find x β coal strike seam length along dip.
$$\sin 5 = \ \frac{h_{\text{si}}}{x_{i}}\ \rightarrow x_{i} = \ \frac{h_{\text{si}}}{\sin 5}$$
For seam I:
hs1β=β150[m]
$$x_{1} = \frac{h_{s1}}{\sin 5} = \ \frac{150}{\sin 5} \approx 1\ 712,06\lbrack m\rbrack$$
areaΒ forΒ seamΒ numberΒ Iβ=βHβ
*β
Β x1β=β4000β
*β
Β 1Β 721,β06β=β6Β 884Β 240[m2]Β
For seam II:
hs2β=β150β
ββ
20β=β130Β [m]
$$x_{2} = \frac{h_{s2}}{\sin 5} = \ \frac{130}{\sin 5} \approx 1\ 491,58\lbrack m\rbrack$$
areaΒ forΒ seamΒ numberΒ IIβ=βHβ
*β
Β x2β=β4000β
*β
1Β 491,β58Β β=β5Β 966Β 320Β [m2]Β
For seam III:
hs3β=β130β
ββ
20β=β110Β [m]
$$x_{3} = \frac{h_{s3}}{\sin 5} = \ \frac{110}{\sin 5} \approx 1\ 262,11\lbrack m\rbrack$$
areaΒ forΒ seamΒ numberΒ IIIβ=βHβ
*β
Β x3β=β4000β
*β
1Β 262,β11Β β=β5Β 048Β 440Β [m2]Β
Average coefficient of reserves recovery , Ξ·av; let Ξ·av = 0,6
Index of useful capacity of deposit, Zu [Mg/m2]:
$$Z_{u} = \ \frac{1,3*\sum_{}^{}m_{i}}{\cos \propto}\eta_{\text{av}} = \ \frac{1,3*(3 + 3 + 4\ )}{\cos 5}*0,6 = \mathbf{7,83\ }\lbrack\frac{\text{Mg}}{m^{2}}\rbrack\ $$
Where:
mi β I-th seam thickness [m],
Ξ± β dip angle [degrees]
Ad IV
No | Name | Unit | Depth/Length | Driving through | Rate of advance [m/mth] | Time [mth] |
---|---|---|---|---|---|---|
1 | Preparatory workings before main shaft sinking | 6 | ||||
2 | Main shaft sinking (1) | [m] | 720 | stone | 60 | 12 |
3 | Main shaft pit bottom inlet | stone | 3 | |||
4 | Driving the main transportation crosscut (3) | [m] | 50 | stone | 50 | 1 |
5 | Crossing (3/4L) | [m] | stone/coal | 0,25 | ||
6 | Driving the main transportation drift (4L) | [m] | 1000 | coal | 150 | 6,7 |
7 | Crossing (4L/5L) | [m] | coal | 0,25 | ||
8 | Driving the inclined drift I (5L) | [m] | 1720 | coal | 120 | 14,3 |
9 | Crossing (5L/6L) | [m] | coal | 0,25 | ||
10 | Preparatory workings before air shaft sinking | 4 | ||||
11 | Air shaft sinking (10) | [m] | 560 | stone | 60 | 9,3 |
12 | Air shaft pit bottom inlet | stone | 2 | |||
13 | Driving the main ventilation crosscut (8) | [m] | 50 | stone | 50 | 1 |
14 | Crossing (8/6L) | [m] | stone/coal | 0,25 | ||
15 | Driving the main ventilation drift (6L) | [m] | 1000 | coal | 150 | 6,7 |
16 | Driving the main panel entry for longwall I | [m] | 1000 | coal | 200 | 5 |
17 | Driving the tail panel entry for longwall I | [m] | 1000 | coal | 200 | 5 |
18 | Driving the set-up entry for longwall I | [m] | 300 | coal | 100 | 3 |
19 | Longwall I face equipment installation | 3 | ||||
20 | Start up of longwall I extraction | |||||
21 | Driving the main transportation drift (4R) | [m] | 1000 | coal | 150 | 6,7 |
22 | Crossing (4R/5R) | [m] | coal | 0,25 | ||
23 | Driving the inclined drift II (5R) | [m] | 1720 | coal | 120 | 14,3 |
24 | Driving the main ventilation drift (6R) | [m] | 1000 | coal | 150 | 6,7 |
25 | Crossing (5R/6R) | [m] | coal | 0,25 | ||
26 | Driving the main panel entry for longwall II | [m] | 1000 | coal | 200 | 5 |
27 | Driving the tail panel entry for longwall II | [m] | 1000 | coal | 200 | 5 |
28 | Driving the set-up entry for longwall II | [m] | 300 | coal | 100 | 3 |
29 | Longwall II face equipment installation | 3 | ||||
30 | Start up of longwall II extraction |
Mine construction schedule
Ad V
Mine production schedule
Seam number | Saleable reserves [MMg] |
Annual saleable production [MMg/year] |
Production period [years] |
---|---|---|---|
I | 16,109 | 3,85 | 4,2 |
II | 13,961 | 3,85 | 3,6 |
III | 15,751 | 3,85 | 4,1 |
Years:
Ad VI
Underground part
Expenditure on shaft sinking, Iu1 [MPLN]
No | Specification | Drive through | Size | Unit cost [ThPLN/unit] |
Total [MPLN] |
---|---|---|---|---|---|
unit | amount | ||||
1 | Main shaft sinking (1) | stone | [m] | 720 | 340 |
2 | Driving the main shaft pit bottom inlet | stone | 1 | ||
3 | Air shaft sinking (10) | stone | [m] | 560 | 250 |
4 | Driving air shaft pit bottom inlet | stone | 1 | ||
Total | 386,8 |
Expenditure on driving main development openings, Iu2 [MPLN]
No | Specification | Drive through | Size | Unit costs [ThPLN/unit] | Total [MPLN] |
---|---|---|---|---|---|
Unit | Amount | ||||
1 | Driving the main cross transportation opening (3) | stone | [m] | 50 | 25 |
2 | Crossing (3/4L) | stone/coal | [m] | ||
3 | Driving the main transportation drift (4L) | coal | [m] | 1000 | 15 |
4 | Crossing (4L/5L) | coal | [m] | ||
5 | Driving the inclined drift I (5L) | coal | [m] | 1720 | 12 |
6 | Crossing (5L/6L) | coal | [m] | ||
7 | Driving the main cross ventilation opening (8) | stone | [m] | 50 | 25 |
8 | Crossing (8/6L) | stone/coal | [m] | ||
9 | Driving the main ventilation drift (6L) | coal | [m] | 1000 | 15 |
10 | Driving the main longwall I panel entry | coal | [m] | 1000 | 10 |
11 | Driving the tail longwall I panel entry | coal | [m] | 1000 | 10 |
12 | Driving the set-up entry for longwall I | coal | [m] | 300 | 15 |
13 | Driving the main transportation drift (4R) | coal | [m] | 1000 | 15 |
14 | Crossing (4R/5R) | coal | [m] | ||
15 | Driving the inclined drift II (5R) | coal | [m] | 1720 | 12 |
16 | Driving the main ventilation drift (6R) | coal | [m] | 1000 | 15 |
17 | Crossing (5R/6R) | coal | [m] | ||
18 | Driving the main longwall II panel entry | coal | [m] | 1000 | 10 |
19 | Driving the tail longwall II panel entry | coal | [m] | 1000 | 10 |
20 | Driving the set-up entry for longwall II | coal | [m] | 300 | 15 |
Total | 153,08 |
Expenditure on driving pump room and other chambers at pit bottoms, Iu3 [MPLN]
$$I_{u3} = aW_{d} + b + c\sqrt{Q_{w}} + dQ_{w} = 4,73*19,25 + 7,7 + 2,1\sqrt{3} + 2,7*3 = \ \mathbf{110,49}\ \lbrack MPLN\rbrack$$
where:
Wd β daily run-of-mine productions [ThMg/d]
Qw β natural water inflowe in the mine [m3/min]
For the gassy mine without water problems: a=4,73; b=7,7; c=2,1; d=2,7
Expenditure on underground equipment (in gassy mine), Iu4 [MPLN]
$$I_{u4} = \left( \frac{40,5}{Z_{u}} + 16,2 \right)W_{d} = \left( \frac{40,5}{7,83} + 16,2 \right)*19,25 = \mathbf{411,42\ }\ \lbrack MPLN\rbrack$$
where:
Zu β index od useful capacity of deposit [Mg/m2]
Expenditure on mechanization and automation (for gassy mine), Iu5 [MPLN]
Iu5β=β6,β9Wdβ
+β
31,β5β=β6,β9β
*β
19,β25β
+β
31,β5β=β164,β33Β [MPLN]
where:
Wd β daily run-of-mine productions [ThMg/d]
Total expenditure on underground workings:
$$I_{u} = \ \sum_{i = 1}^{i = 5}{I_{\text{ui}} = 386,8 + 153,08 + 110,49 + 411,12 + 164,33 = \mathbf{1226,12}\ \left\lbrack \text{MPLN} \right\rbrack\ }$$
Surface part:
Expenditures on surface installations (e.g. winding installations, shaft head gear settings, construction of winding machine, processing plant, housing and other pit top buildings, etc.), Is1 [MPLN]
Is1β=β54Β [MPLN]
Expenditure for surface coal processing and handling installations, Is2 [MPLN]
Is2β=β0,β45Wd(VjbKjb+CmKjm+MmKjs)β=β0,β45β
*β
19,β25(140*0,15+3,4*8,4+6*2,4)β=βΒ 554,β05Β [MPLN]
where:
Wd β daily run-of-mine productions [ThMg/d]
Vjb β processing/coal handling capacity of plant [m3/Mg/h]
Kjb β unit cost per m3 plant capacity [PLN/m3/Mg/h]
Cm β capacity od the coal handling machinery [Mg/Mg/h]
Kjm β unit costs of installation of processing machinery [PLN/(Mg/Mg/h)]
Mm β installed power of the processing plant [kW/Mg/h]
Kjs β unit costs of the installed power [MPLN/(kW/Mg/h)]
Let: Vjb=140; Kjb=0,15; Cm=3,4; Kjm=8,4; Mm=6; Kjs=2,4
Expenditure for preparation of mine stockyard and its fencing, Is3 [MPLN]
Is3β=βaLbβ
+β
brβ
+β
cnzβ
+β
dFβ
+β
eβ
+β
5,β25β=β0,β45β
*β
0,β45β
+β
0,β1β
*β
20β
+β
0,β4β
*β
11β
+β
0,β45β
*β
12β
+β
0,β45β
+β
5,β25β=βΒ 17,β7Β [MPLN]
where:
Lb β length of railway truck in mine stockyard area [km]
r β number of railway crossing in mine stockyard area,
nz β number of loading track for coal,
F β surface area of the mine stockyard [ha]
Let: Lb=0,45; r=20; a=0,45; b=0,1; c=0,4; nz=11; d=0,45; e=0,45; F=12
Expenditure for installation of hydraulic backfilling, Is4 [MPLN]
No need for backfilling
Is4β=β0Β
Expenditure of the main ventilation infrastructure, Is5 [MPLN]
Is5β=β(bp+0,0065qm)Wdβ
+β
10,β2Swβ
+β
1,β5Sxβ
+β
13,β5nmβ=β(0,99+0,0065*6,6)β
*β
19,β25β
+β
10,β2β
*β
1β
+β
1,β5β
*β
1β
+β
13,β5β
*β
1β=β45,β08Β [MPLN]
where:
bp βcoefficient, bp=0,09*qs β bp=0,99
qs β volume of methane emission per Mg of coal extracted [m3/Mg]
qm β yield of gas from methane emission points [m3/Mg]
Sw β number of exhaust ventilation shafts
Sx β number of intake ventilation shafts
Nm β number of methane emission points = number of exhaust shafts
Let: qs=11; qm=6,6; Sw=1; Sx=1; Nm=1
Expenditure on the installation of electric energy supply infrastructure, Is6 [MPLN]
Is6β=β12,β2Β [MPLN]
Expenditure on the compressed air supply system, Is7 [MPLN]
Is7β=β1,β47Wdβ
+β
2,β25ns1β=β1,β47β
*β
19,β25β
+β
2,β25β
*β
1β=β30,β55Β [MPLN]
where:
ns1 β number of compressed air stations = number of winding shafts = 1
Expenditure for hot water supply system, Is8 [MPLN]
$$I_{s8} = \left( \frac{a}{P_{u}} + b \right)W_{d} + c = \left( \frac{2,5}{5} + 0,7 \right)*19,25 + 8 = \ \mathbf{31,1}\ \lbrack MPLN\rbrack$$
where:
Wd β as above
Pu β underground productivity [Mg/emp/d]
a, b, c β coefficients depending upon the supply model; for the projected mine model:
a=2,5; b=0,7; c=8
Expenditure on the constructions of administrative buildings and installation of telecommunication network, Is9 [MPLN]
$$I_{s9} = \left( \frac{1,83}{P_{u}} + 0,13 \right)W_{d} + 3,8 = \left( \frac{1,83}{5} + 0,13 \right)*19,25 + 3,8 = \mathbf{13,35}\ \lbrack MPLN\rbrack$$
where:
Wd β as above
Expenditure on the supply centers, workshops and storage yards and narrow gauge track layout for mine, Is10 [MPLN]
Is10β=β2,β4Wdβ
+β
2,β63β=β2,β4β
*β
19,β25β
+β
2,β63β=β48,β83Β [MPLN]
where:
Wd β as above
Expenditure on the mine premises preparation, land work, area protection and fencing, Is11 [MPLN]
Is11β=β16,β5Β [MPLN]
Cost budgeting for mine development construction, Is12 [MPLN]
Is12β=β0,β4Iu2β=β0,β4β
*β
153,β08β=β61,β23Β [MPLN]
where:
Iu2 β expenditure on main development openings [MPLN]
Reserve fund for unexpected expenditure, Is13 [MPLN]
$$I_{s13} = 0,1\left( I_{u} + \sum_{i = 1}^{i = 12}I_{\text{si}} \right) = 0,1\left( 1226,12 + 884,6 \right) = \ \mathbf{211,07}\ \lbrack MPLN\rbrack$$
where:
Iu β total expenditure for underground mine development [MPLN]
Total expenditure on surface workings, Is [MPLN]
$$I_{s} = \ \sum_{i = 1}^{i - 13}I_{\text{si}} = \ \mathbf{1095,67}\ \lbrack MPLN\rbrack$$
Total CAPEX β total expenditure (underground and surface), I [MPLN]
Iβ=βIuβ
+β
Isβ=β1226,β12β
+β
Β 1095,β67Β β=β2321,β78Β [MPLN]
Calculation of annual amortization, Aan [MPLN/a]
$$A_{\text{an}} = \ \frac{I}{t_{\text{av}}} = \frac{2321,78}{18} = \mathbf{128,99\ }\lbrack\frac{\text{MPLN}}{a}\rbrack$$
where:
tav β average period of influence of the mine assets, tav = 18 years
Calculation of unit amortization, a [PLN/Mg]
$$a = \frac{A_{\text{an}}}{S} = \frac{128,99}{3,85} = \mathbf{33,50}\ \lbrack\frac{\text{PLN}}{\text{Mg}}\rbrack$$
where:
S β annual saleable production of the mine [MPLN/a]
Ad VII
Annual operating cost specification
ld | Cost specification | Fixed [MPLN/a] |
Variable [MPLN/a] |
Total [MPLN/a] |
Unit cost [PLN/Mg] |
---|---|---|---|---|---|
1 | Amortization | 128,99 | 128,99 | 33,50 | |
2 | Materials | 25,70 | 82,78 | 108,48 | 28,18 |
3 | Energy | 37,40 | 27,72 | 65,12 | 16,91 |
4 | Equipment lease and rental | 10,80 | 10,80 | 2,81 | |
5 | Drilling and mining services | 7,10 | 55,83 | 62,93 | 16,34 |
6 | Methane drainage services | 3,00 | 23,49 | 26,49 | 6,88 |
7 | Mining damage services | 12,00 | 12,00 | 3,12 | |
8 | Other mining services | 5,00 | 10,40 | 15,40 | 4,00 |
9 | Repair services | 25,00 | 15,40 | 40,40 | 10,49 |
10 | Transport services | 3,80 | 13,48 | 17,28 | 4,49 |
11 | Other services | 10,00 | 3,47 | 13,47 | 3,50 |
12 | Labor costs | 577,50 | 577,50 | 150,00 | |
13 | Welfare securities | 117,81 | 117,81 | 30,60 | |
14 | Union benefits | 45,05 | 45,05 | 11,70 | |
15 | Real property tax | 7,65 | 7,65 | 1,99 | |
16 | Royalties | 0,08 | 0,08 | 0,02 | |
17 | Environment charge | 0,04 | 0,04 | 0,01 | |
18 | PFRON charge | 3,10 | 3,10 | 0,81 | |
19 | Other taxes and charges | 0,42 | 0,42 | 0,11 | |
20 | Insurances | 4,60 | 4,60 | 1,19 | |
21 | Total production cost | 1024,91 | 232,67 | 1257,58 | 326,64 |
22 | Cost of sales | 251,52 | 65,33 | ||
23 | Total operating cost | 1509,10 | 391,97 | ||
24 | Cos minus amortization | 1380,11 | 358,47 |
where:
S β annual saleable production of the mine [MMg/a], S=3,85
To point 12. let average annual salary is equal to 0,12 [MPLN/a] , N-manpower = 4813
Ad VIII
Evaluation of mine planning project efficiency
Year | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Discount coefficient, at | 1 | 0,91 | 0,83 | 0,75 | 0,68 | 0,62 | 0,56 | 0,51 | 0,47 | 0,42 | 0,39 | 0,35 | 0,32 | 0,29 | 0,26 | 0,24 | 0,22 | 0,20 | 0,18 | 0,16 |
Annual sales, St [MMg/year] | 0,77 | 1,93 | 2,31 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | 3,85 | ||||
Average coal price, Pt [PLN/Mg] | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 |
Revenues, Rt [MPLN/year] | 346,5 | 866,25 | 1039,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | 1732,5 | ||||
Annual cost, Ct [MPLN/year] | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | 1380,11 | ||||
Investments, It [MPLN/year] | 110,56 | 221,12 | 331,68 | 442,24 | 663,37 | 331,68 | 221,12 | |||||||||||||
Inventories, Bt [MPLN/year] | 65 | 65 | -130 | |||||||||||||||||
Capital expenditures, Nt=It+Bt | 110,56 | 221,12 | 331,68 | 442,24 | 728,37 | 331,68 | 286,12 | -130 | ||||||||||||
Rt-Ct | -1033,61 | -513,86 | -427,23 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | 352,39 | ||||
at(Rt-Ct) | -705,97 | -319,07 | -241,16 | 180,83 | 164,39 | 149,45 | 135,86 | 123,51 | 112,28 | 102,08 | 92,80 | 84,36 | 76,69 | 69,72 | 63,38 | 57,62 | ||||
atNt | 110,56 | 201,02 | 274,12 | 332,26 | 497,48 | 205,95 | 161,51 | -21,26 | ||||||||||||
at(Rt-Ct-Nt) | -110,56 | -201,02 | -274,12 | -332,26 | -1203,45 | -525,01 | -402,67 | 180,83 | 164,39 | 149,45 | 135,86 | 123,51 | 112,28 | 102,08 | 92,80 | 84,36 | 76,69 | 69,72 | 63,38 | 78,87 |
where:
atβ=β(1β +β r)βt
r β discount rate, r=0,1
Ad IX
Criteria:
$$NPV = \sum_{t = 0}^{t = 19}{a_{t}\left( R_{t} - C_{t} - N_{t} \right)} = \ - 1614,88$$
I didnβt calculate IRR because NPVβ 0
Sensitivity analysis for criteria NPV
% | Average coal price | NPV | %NPV |
---|---|---|---|
-10 | 405 | -2440,79 | -0,51 |
-5 | 427,5 | -2027,83 | -0,26 |
0 | 450 | -1614,88 | 0,00 |
5 | 477,5 | -1110,15 | 0,31 |
10 | 495 | -788,96 | 0,51 |
% | CAPEX | NPV | %NPV |
---|---|---|---|
-10 | 2089,606075 | -1444,69 | 0,11 |
-5 | 2205,695302 | -1529,78 | 0,05 |
0 | 2321,784528 | -1614,88 | 0,00 |
5 | 2437,873755 | -1699,97 | -0,05 |
10 | 2553,962981 | -1785,06 | -0,11 |
% | Annual operating cost | NPV | %NPV |
---|---|---|---|
-10 | 1242,097259 | -803,64 | 0,50 |
-5 | 1311,102663 | -1209,26 | 0,25 |
0 | 1380,11 | -1614,88 | 0,00 |
5 | 1449,113469 | -2020,49 | -0,25 |
10 | 1518,118872 | -2426,11 | -0,50 |
Ad X
Summary:
Reserves:
proved: 76,369 [MMg]
saleable: 45,821 [MMg]
Number of seams: 3
Number of shafts: 2
Horizon depth: 700 [m]
Horizon interval: 150 [m]
Number of longwalls: 2
Annual saleable production: 3,85 [MMg/a]
Overall manpower: 4813 [man]
Underground manpower: 3850 [man]
Overall productivity: 800 [Mg/emp/a]
Underground productivity: 5 [ Mg/man/d]
Daily run-of-mine production: 19,25 [ThMg/d]
CAPEX: 2321,78 [MPLN]
OPEX β total: 1380,11[MPLN/a]
NPV, IRR: NPV= -1614,88; I didnβt calculate IRR because NPVβ 0
Conclusions derived from sensitivity analysis: