Dane dla kształtowników
½ I400HEB : | A=98,9cm2 | L90x90x11 : | A=18,7cm2 |
---|---|---|---|
Iy=2440cm4 | Iy=138cm4 | ||
Iz=5410cm4 | Iz=138cm4 Iyz=80,5cm4 |
||
ez=3,66cm | ey=2,62cm ez=2,62cm |
||
Współrzędne środków ciężkości kształtowników w początkowym układzie współrzędnych y1z1
$${y_{1}^{\frac{1}{2}\text{\ I}} = 0cm\backslash n}{z_{1}^{\frac{1}{2}I} = 16,34cm\backslash n}{y_{1}^{L} = - 2,62\text{cm}\backslash n}{z_{1}^{L} = 6,38cm\backslash n}{y_{c} = \frac{A^{\frac{1}{2}\text{\ I}}*y_{1}^{\frac{1}{2}\text{\ I}} + A^{L}*y_{1}^{L}}{A^{\frac{1}{2}\text{\ I}} + A^{L}} = \frac{98,9*\left( 0 \right) + 18,7*( - 2,62)}{98,9 + 18,7} = - 0,42cm\backslash n}$$
$y_{0}^{\frac{1}{2}\ I} = y_{1}^{\frac{1}{2}\ I} - \text{yc}$=0,42cm
$z_{0}^{\frac{1}{2}I} = z_{1}^{\frac{1}{2}I} - zc = 2,18cm$
y0L = y1L − yc = −2, 20cm
z0L = z1L − zc = −8, 38cm
Iy0 = 2440 + 98, 9 * (2,18)2 + 138 + 18, 7 * (−8,38)2 = 4106, 8cm4 ∖ nIz0 = 5410 + 98, 9 * (0,42)2 + 138 + 18, 7 * (−2,20)2 = 5656, 0cm4 ∖ nIy0z0 = 0 + 98, 9 * (0,42) * (2,12) + 80, 5 + 18, 7 * (−2,2) * (−8,38) = 513, 3cm4
$${\tan\left( 2\varphi_{0} \right) = - \frac{2*I_{y0z0}}{I_{y0} - I_{z0}} = - \frac{2*\left( 513,3 \right)}{4106,8 - 5656,0} = 0,6627\backslash n}{2\varphi_{0} = \arctan\left( 0,6627 \right) = 33,53\backslash n}{\varphi_{0} = 16,77}$$
$${I_{1} = \frac{1}{2}\left( I_{y0} + I_{z0} \right) + \frac{1}{2}\sqrt{\left( I_{y0} - I_{z0} \right)^{2} + 4*{I_{y0z0}}^{2}} = \frac{1}{2}\left( 4106,8 + 5656 \right) + \frac{1}{2}\sqrt{\left( 4106 - 5656 \right)^{2} + 4*\left( 513.3 \right)^{2}} = 4881.4 + 929,5 = 5810,9\text{cm}^{4}\backslash n}{I_{2} = \frac{1}{2}\left( I_{y0} + I_{z0} \right) - \frac{1}{2}\sqrt{\left( I_{y0} - I_{z0} \right)^{2} + 4*{I_{y0z0}}^{2}} = \frac{1}{2}\left( 4106,8 + 5656 \right) - \frac{1}{2}\sqrt{\left( 4106,8 - 5656 \right)^{2} + 4*\left( 513,3 \right)^{2}} = 4881,4 - 929,5 = 3951,9\text{cm}^{4}\ \backslash n}{I_{y0} < I_{z0}I_{z} = I_{1}\ ;\ I_{y} = I_{2}}$$
My0max = −P * 2, 5a − M = −3, 75qa2 − 2, 5qa2
My0max = −6, 25q a2 ∖nMy = My0 * cosφ0 ∖nMz = −My0 * sinφ0
$$z = y*\frac{M_{z}}{M_{y}}*\frac{J_{y}}{J_{z}} = - tan\varphi_{0}*\frac{J_{y}}{J_{z}}*y = - tan\ 16,77*\frac{3951}{5810}*y = - 0,205*y$$
$${y_{1} = - 1,225cm\backslash n}{z_{1} = 0\backslash n}{y_{0} = - 0,8cm\backslash n}{z_{0} = - 14,76cm\backslash n}{y = y_{0}*cos\varphi_{0} + z_{0}*sin\varphi_{0} = - 0,77 - 4,26 = - 5,03cm\backslash n}{z = - y_{0}*sin\varphi_{0} + z_{0}*cos\varphi_{0} = 0,23 - 14,13 = - 13,90cm\backslash n}{\sigma_{x}^{1} = \frac{M_{y}}{I_{y}}*z - \frac{M_{z}}{I_{z}}*y = M_{y0}*\left( \frac{\cos\varphi_{0}}{I_{y}}*z + \frac{\sin\varphi_{0}}{I_{z}}*y \right) = - M_{y0}*0,017883\frac{1}{\text{cm}^{3}}}$$
$${y_{1} = 15cm\backslash n}{z_{1} = 20cm\backslash n}{y_{0} = 15,42cm\backslash n}{z_{0} = 5,24cm\backslash n}{y = y_{0}*cos\varphi_{0} + z_{0}*sin\varphi_{0} = 14,76 + 1,51 = 16,27cm\backslash n}{z = - y_{0}*sin\varphi_{0} + z_{0}*cos\varphi_{0} = - 4,45 + 5,02 = 0,57cm\backslash n}{\sigma_{x}^{1} = \frac{M_{y}}{I_{y}}*z - \frac{M_{z}}{I_{z}}*y = M_{y0}*\left( \frac{\cos\varphi_{0}}{I_{y}}*z + \frac{\sin\varphi_{0}}{I_{z}}*y \right) = - M_{y0}*0,000946\frac{1}{cm^{3}}}$$
Największe naprężenia występują w punkcie 1 a=1m=100cm
$${\left| \sigma_{x} \right| \leq K_{g}\backslash n}{\sigma_{x}^{\max} = M_{y0}*0,017883\frac{1}{cm^{3}} = 62500q\text{\ cm}^{2}*0,017883\frac{1}{\text{cm}^{3}} = 1118q\frac{1}{\text{cm}}\backslash n}{q_{d\text{op}} = \frac{21,5\frac{\text{kN}}{\text{cm}^{2}}}{1118\frac{1}{\text{cm}}} = 0,0192\frac{\text{kN}}{\text{cm}} = 1,92\frac{\text{kN}}{m}}$$
Schemat statyczny belki wtórnej
Obciążenie belki wtórnej
Sposób rozkładu obciążenia o zmienności parabolicznej na figury proste
$${F_{1}^{*} = \frac{2}{3}*1,72*\frac{q\left( 1,72 \right)^{2}}{8} = 0,424q\ m^{3}\backslash n}{F_{2}^{*} = \frac{2}{3}*2,78*\frac{q\left( 2,78 \right)^{2}}{8} = 1,79q\ m^{3}\backslash n}{F_{3}^{*} = \frac{1}{2}*2,78*6,5q = 9,035q\ m^{3}\backslash n}{F_{4}^{*} = \frac{1}{2}*2,5*3,75q = 4,688q\ m^{3}}$$
$${V_{a}^{*} = \frac{F_{1}^{*}*1,72 + F_{2}^{*}*3,11 - F_{3}^{*}*3,57}{4,5} = - 5,77qm^{3}\backslash n}{T_{B}^{*L} = V_{a}^{*} - F_{1}^{*} - F_{2}^{*} + F_{3}^{*} = 1,051q\ m^{3}}$$
Vb* = − Va* + F1* + F2* − F3* − F4* = −5, 739q
$${M_{A}^{*P} = Mb = - V_{b}^{*}*2,5 - F_{4}^{*}0,833 = 10,442q\ m^{4}\backslash n}{\varphi_{B} = \frac{T_{B}^{*}}{\text{EI}}\backslash n}{\omega_{A} = \frac{M_{A}^{*}}{\text{EI}}}$$
qz = q * cosφ0 ∖ nqy = q * sinφ0
$${{\omega'}_{B} = \frac{1,051*1,92\frac{\text{kN}}{m}*\ m^{3}*cos\varphi_{0}}{205*10^{6}\frac{\text{kN}}{m^{2}}*3951,9*10^{- 8}m^{4}} = - 0,00012\ rad\ 0,00024rad\backslash n}{\omega_{A} = \frac{10,442*1,92\frac{\text{kN}}{m}*\ m^{4}*cos\varphi_{0}}{205*10^{6}\frac{\text{kN}}{m^{2}}*3951,9*10^{- 8}m^{4}} = 0,00237m}$$
${v^{'}}_{B} = \frac{1,051*1,92\frac{\text{kN}}{m}*\ m^{3}*sin\varphi_{0}}{205*10^{6}\frac{\text{kN}}{m^{2}}*5810,9*10^{- 8}m^{4}} = - 0,00015\ rad\ 0,00005rad$
$$v_{A} = \frac{10,442*1,92\frac{\text{kN}}{m}*\ m^{4}*sin\varphi_{0}}{205*10^{6}\frac{\text{kN}}{m^{2}}*5810,9*10^{- 8}m^{4}} = 0,00049m$$
ω0 = ωA * cosφ0 + vA * sinφ0 = 0, 00240m
ω0 = ω′B * cosφ0 + v′B * sinφ0 = −0, 00015rad 0, 00024rad
MyB − B = −34, 37kNm
$$z_{c} = \frac{20*20*10 - 14*14,6*9}{20*20 - 14*(20 - 2*2,7)} = 11,04cm$$
$$I_{y} = \frac{20*20^{3}}{12} + 20*20*\left( 11,04 - 10 \right)^{2} - (\frac{{14,6*14}^{3}}{12} + 14,6*14*\left( 11,04 - 9 \right)^{2}) = 9576,81cm^{4}$$
Naprężenia normalne będziemy wyznaczać w punktach (1), (6) oraz (4) – aby wyznaczyć σzred. Naprężenia styczne będziemy wyznaczać w punktach (2), (3), (5) – ze względu na zmieniającą się szerokość przekroju we włóknach dolnych i górnych; oraz (4) – aby wyznaczyć σzred.
$${\overset{\overline{}}{S}}_{y}^{\left( 2 \right)} = 2*20*10,04 = 401,6cm^{3}$$
$${{\overset{\overline{}}{S}}_{y}^{\left( 3 \right)} = {\overset{\overline{}}{S}}_{y}^{\left( 2 \right)} + 2*\ 2,7\ *9,04*4,52 = 622,2cm^{3}\backslash n}{{\overset{\overline{}}{S}}_{y}^{\left( 4 \right)} = {\overset{\overline{}}{S}}_{y}^{\left( 5 \right)} + 2*2,7*4,96*2,10 = 613,0cm^{3}\backslash n}{{\overset{\overline{}}{S}}_{y}^{\left( 5 \right)} = 20*4*6,96 = 556,8cm^{3}}$$
z(1) = −11, 04cm ∖ nz(4) = 0, 76cm ∖ nz(6) = 8, 96cm ∖ nb(1) = b(2A) = 20cm ∖ nb(2B) = b(3) = b(4) = b(5A) = 5, 4cm ∖ nb(5B) = b(6) = 20cm
$${\sigma_{x} = \frac{M_{y}}{I_{y}}*z\backslash n}{\sigma_{x}^{\left( 1 \right)} = \frac{- 3447\ \text{kNcm}}{9576,81\ cm^{4}}*\left( - 11,04\text{cm} \right) = 3,97\frac{\text{kN}}{cm^{2}} = 39,7\text{MPa}\backslash n}{\sigma_{x}^{\left( 3 \right)} = 0\backslash n}{\sigma_{x}^{\left( 4 \right)} = \frac{- 3447\ \text{kNcm}}{9576,81\ cm^{4}}*0,76\text{cm} = - 0,274\frac{\text{kN}}{cm^{2}} = - 2,74\text{MPa}\backslash n}{\sigma_{x}^{(6)} = \frac{- 3447\ \text{kNcm}}{9576,81\ cm^{4}}*8,96\text{cm} = - 3,23\frac{\text{kN}}{cm^{2}} = - 32,3\text{MPa}}$$
ɕ xB-B[Mpa]
$${T_{\text{xz}} = \frac{T_{z}*{\overset{\overline{}}{S}}_{y}}{I_{y}*b}\backslash n}{T_{\text{xz}}^{\left( 1 \right)} = 0\backslash n}{T_{\text{xz}}^{\left( 2A \right)} = \frac{- 45,83kN*401,6cm^{3}}{9576,81cm^{4}*20cm} = - 0,096\frac{\text{kN}}{cm^{2}} = - 0,96MPa\backslash n}{T_{\text{xz}}^{\left( 2B \right)} = \frac{- 45,83kN*401,6cm^{3}}{9576,81cm^{4}*5,4cm} = - 0,356\frac{\text{kN}}{cm^{2}} = - 3,56MPa\backslash n}{T_{\text{xz}}^{\left( 3 \right)} = \frac{- 45,83kN*622,2cm^{3}}{9576,81cm^{4}*5,4cm} = - 0,551\frac{\text{kN}}{cm^{2}} = - 5,51MPa\backslash n}{T_{\text{xz}}^{\left( 4 \right)} = \frac{- 45,83kN*613,0cm^{3}}{9576,81cm^{4}*5,4cm} = - 0,543\frac{\text{kN}}{cm^{2}} = - 5,43MPa\backslash n}{T_{\text{xz}}^{\left( 5A \right)} = \frac{- 45,83kN*556,8cm^{3}}{9576,81cm^{4}*5,4cm} = - 0,493\frac{\text{kN}}{cm^{2}} = - 4,93MPa\backslash n}{T_{\text{xz}}^{\left( 5B \right)} = \frac{- 45,83kN*556,8cm^{3}}{9576,81cm^{4}*20cm} = - 0,133\frac{\text{kN}}{cm^{2}} = - 1,33MPa\backslash n}$$
Naprężenia zredukowane wyznaczone zgodnie z hipotezą Treski-Guesta w punkcie A przekroju B-B
$${\sigma_{\text{zred}} = \sqrt{\sigma_{x}^{2} + 4*T_{\text{xz}}^{2}}\backslash n}{\sigma_{\text{zred}}^{4} = \sqrt{{( - 2,74)}^{2} + 3*{( - 5,43)}^{2}} = 9,80\text{MPa}}$$