1.
Dane:
B=450m K=0,8m/d l=250m x1=100m
x2=150m ,x3=200m
1. Obliczamy q.
q = K * I * f
$q = K*\frac{{h_{1}}^{2} - {h_{2}}^{2}}{2l}$
h1 = 150 − 125, 5 = 24, 5m
h2 = 135 − 125, 5 = 9, 5m
$q = K*\frac{{h_{1}}^{2} - {h_{2}}^{2}}{2l}$
2. Obliczamy Q
$q = 0,8*\frac{{24,5}^{2} - {9,5}^{2}}{2*250} = 0,82\ \frac{m^{3}}{d}$
Q = B * q
$Q = 450*0,82 = 369\frac{m^{3}}{d}\ $
3. Obliczamy położenie zwierciadła wody w odległości x
q = K * I * f
$q = K*\frac{{h_{1}}^{2} - {h_{2}}^{2}}{2l}$
$K*\frac{{h_{1}}^{2} - {h_{2}}^{2}}{2l} = K*\frac{{h_{x}}^{2} - {h_{2}}^{2}}{2x}$
$\mathbf{h}_{\mathbf{x}}\mathbf{=}\sqrt{{\mathbf{h}_{\mathbf{2}}}^{\mathbf{2}}\mathbf{+}\frac{\mathbf{x}}{\mathbf{l}}\mathbf{*}\left( {\mathbf{h}_{\mathbf{1}}}^{\mathbf{2}}\mathbf{-}{\mathbf{h}_{\mathbf{2}}}^{\mathbf{2}} \right)}$
a) Dla x1=100m
${h_{x}}_{1} = \sqrt{{9,5}^{2} + \frac{100}{250}*\left( {24,5}^{2} - {9,5}^{2} \right)}$
hx1 = 17, 2 m
b) Dla x2=150m
${h_{x}}_{2} = \sqrt{{9,5}^{2} + \frac{150}{250}*\left( {24,5}^{2} - {9,5}^{2} \right)}$
hx2 = 19, 9 m
c) Dla x3=200m
${h_{x}}_{3} = \sqrt{{9,5}^{2} + \frac{200}{250}*\left( {24,5}^{2} - {9,5}^{2} \right)}$
hx3 = 22, 32 m
Hx = Hp + hx
Hp = 125, 5m
Hx1 = 125, 5 + 17, 2 = 142, 7 m, n, p, m
Hx2 = 125, 5 + 19, 9 = 145, 4 m, n, p, m
Hx3 = 125, 5 + 22, 32 = 147, 82 m, n, p, m
2.
Dane:
B=250m l=80m K1=8m/d
K2=4m/d H1=133m H2=130m h1=9m h2=10m
q = Ksr * I * f
K1 > K2
$K_{sr} = \frac{K_{1} - K_{2}}{\ln\frac{K_{1}}{K_{2}}}$
$I = \frac{H_{1} - H_{2}}{l}$
$f = \frac{h_{1} - h_{2}}{2}$
$q = K_{sr}*\frac{H_{1} - H_{2}}{l}*\frac{h_{1} - h_{2}}{2}$
$K_{sr} = \frac{8 - 4}{\ln\frac{8}{4}} = \frac{84}{\ln 2} = 5,77\ \frac{m}{d}$
$q = 5,77*\frac{133 - 130}{80}*\frac{9 + 10}{2} = 2,05\frac{m^{2}}{d}\ $
$Q = B*q = 250*2,05 = 5,15\frac{m^{3}}{d}\ $
3.Okreslić przepływ strumienia beznaporowego o szerokości B=200m
Dane:
K1 = 10 m/d, K2 = 4 m/d, h1 = , h2 = , l1 = 30 m, l2 = 70 m
Dane:
K1 = 10 m/d, K2 = 4 m/d, h1 = , h2 = , l1 =
l2 = 70 m
q = Ksr * I * f
$K_{sr} = \frac{l_{1} + l_{2}}{\frac{l_{1}}{K_{1}} + \frac{l_{2}}{K_{2}}} = 4,88\frac{m}{d}$
$I = \frac{h_{1} - h_{2}}{{l_{1} + l}_{2}} = 0,03$
$f = \frac{h_{1} - h_{2}}{2} = 13,5m$
$q = \frac{{h_{1}}^{2} - {h_{2}}^{2}}{2*\left( \frac{l_{1}}{K_{1}} + \frac{l_{2}}{K_{2}} \right)} = 1,98\ \frac{m^{2}}{d}$
$Q = B*q = \ 396\frac{m^{3}}{d}$
4.
DANE
K1=7,3 m/d
K2=5,4m/d, l=380m, m=2m, H1=154,1 m.n.p.m, H2=150,5 m.n.p.m
h1′ = h1 − m = 2, 9m
h2′ = h2 − m = 4, 8m
qsr = q1 + q2
$q_{sr} = K_{1}*\frac{H_{1} - H_{2}}{l}*m + K_{2}*\frac{H_{1} - H_{2}}{l}*\frac{{h_{1}}^{'} + {h_{2}}^{'}}{2}$
$q_{sr} = 7,3\frac{154,1 - 150,5}{380}*2 + 5,4*\frac{154,1 - 150,5}{380}*\frac{2,90 + 4,20}{2} = 0,32m^{2}/d$
5.Obliczyć dopływ strumienia beznaporowego do rzeki
K1 = 7,3m/d, K2 = 5,4m/d, l=500m, B=150m
Szukane:q,Q
H1=149m H2=152m h1=15m h2=8m
h1'=h1-m1'=10m
h2'= h2-m2'=5m
q = Ksr * I * f
$m_{1} = \frac{{m_{1}}^{'} + {m_{2}}^{"}}{2} = 4m$
$m_{2} = \frac{m_{1} + m_{2}}{2} = 4m$
$I = \frac{H_{1} - H_{2}}{l}$
$f = \frac{h_{1} - h_{2}}{2}$
$K_{sr} = \frac{K_{1}m_{1} - K_{2}m_{2}}{m_{1} + m_{2}} = 6,06m/d$
$q = K_{sr}*\frac{H_{1} - H_{2}}{l}*\frac{h_{1} - h_{2}}{2}$
$q = - 0,42\ \frac{m^{2}}{d}$
$Q = B*q = 150*0,42 = 63\frac{m^{3}}{d}\ $
6.
q = K * m * I
$q = K*m*\frac{H_{1} - H_{2}}{l}$
H1 = 316, 8 − 20, 7 = 296, 1
296, 1 − 255, 5 = 40,6m
H2 = 315 − 7, 3 = 307, 7
307, 7 − 255, 5 = 52,2m
$q = 10,2*27,5*\frac{52,2 - 40,6}{920} = 3,54\ \frac{m^{2}}{d}$
T = K * m
$T = 10,2*27,5 = 280,5\frac{m^{2}}{d}$
$q = K*m*\frac{H_{1} - h_{x}}{x} = K*m*\frac{H_{1} - H_{2}}{l}$
$T*\frac{H_{1} - h_{x}}{x} = T*\frac{H_{1} - H_{2}}{l}$
$\mathbf{h}_{\mathbf{x}}\mathbf{=}\mathbf{H}_{\mathbf{1}}\mathbf{-}\frac{\mathbf{x}}{\mathbf{l}}\mathbf{*}\left( {\mathbf{H}_{\mathbf{1}}}^{\mathbf{2}}\mathbf{-}{\mathbf{H}_{\mathbf{2}}}^{\mathbf{2}} \right)$
a)x1=200m
${h_{x}}_{1} = 52,2 - \frac{200}{920}*\left( {52,2}^{2} - {40,6}^{2} \right) = 49,69m$
H1 = 255, 5 + 49, 69 = 305, 19 m.n.p.m
b)x2=400m
${h_{x}}_{2} = 52,2 - \frac{400}{920}*\left( {52,2}^{2} - {40,6}^{2} \right) = 47,15m$
H2 = 255, 5 + 47, 15 = 302, 65 m.n.p.m
7
q1 + q2 = q3
qI = qII
$q_{1} = \ K_{1}*\frac{h_{1} - m}{x}*\frac{h_{1} - m}{2} = K_{1}*\frac{{{(h}_{1} - m)}^{2}}{2x}$
$q_{2} = \ K_{2}*\frac{h_{1} - m}{x}*m = K_{2m}*\frac{h_{1} - m}{x}$
${q_{3} = K}_{2}*\frac{{m - h}_{2}}{l - x}*\frac{{m + h}_{2}}{2} = K_{2}*\frac{{{m^{2} - h}_{2}}^{2}}{2(l - x)}$
h1 = 19m
h2 = 4m
$K_{1}*\frac{{{(h}_{1} - m)}^{2}}{2x} + K_{2m}*\frac{h_{1} - m}{x} = K_{2}*\frac{{{m^{2} - h}_{2}}^{2}}{2\left( l - x \right)}\ \ \ /*2x\left( l - x \right)$
$x = \frac{l\left( h_{1} - m \right)\lbrack K_{1}*\left( h_{1} - m \right) + 2K_{2}m\rbrack}{\left( h_{1} - m \right)\left\lbrack K_{1}*\left( h_{1} - m \right) + 2K_{2}m \right\rbrack + K_{2}({{m^{2} - h}_{2}}^{2})}$
x = 516, 13m
q = q1 = q2
$q_{1} = T_{1}*I_{1} = T_{1}*\frac{H_{1} - H_{x}}{\frac{l}{2}}$
$q_{2} = T_{2}*I_{2} = T_{2}*\frac{H_{1x} - H_{2}}{\frac{l}{2}}$
$I_{1} = \frac{H_{1} - H_{x}}{l_{1}}$
$I_{2} = \frac{H_{x} - H_{2}}{l_{2}}$
$T_{1}*\frac{H_{1} - H_{x}}{\frac{l}{2}} = T_{2}*\frac{H_{1} - H_{2}}{\frac{l}{2}}\ \ \ /\ *\frac{l}{2}$
T1 * (H1 − Hx)= T2 * (Hx − H2)
T1H1 − T1Hx = T2Hx − T2H2
T1Hx + T2Hx = T1H1 + T2H2 / * T1T2
$H_{x} = \frac{T_{1}H_{1} + T_{2}H_{2\ }}{T_{1} + T_{2}}$
$H_{x} = \frac{35*93,7 + 110*88,9}{35 + 110} = 90,06\ m.n.p.m$
$I_{1} = \frac{H_{1} - H_{x}}{l_{1}} = \frac{93,7 - 90,06}{250} = 1,46*10^{- 2}$
$I_{2} = \frac{H_{x} - H_{2}}{l_{2}} = \frac{90,06 - 88,9}{250} = 4,64*10^{- 3}$
q = q1 = q2
$q_{1} = T_{1}I_{1} = 35*1,46*10^{- 2} = 0,51\ \frac{m^{2}}{d}$
$q_{2} = T_{2}I_{2} = 110*4,64*10^{- 3} = 0,51\ \frac{m^{2}}{d}$
a)Dla x1=100m
$T_{1}*\frac{H_{1} - H_{x_{1}}}{x_{1}} = T_{1}*\frac{H_{1} - H_{x}}{l_{1}}\ \ \ /*x_{1}$
$H_{1} - H_{x_{1}} = \frac{x_{1}}{l_{1}}*\left( H_{1} - H_{x} \right)$
$H_{x_{1}} = H_{1} + \frac{x_{1}}{l_{1}}*\left( H_{1} - H_{x} \right)$
$H_{x_{1}} = 93,7 + \frac{100}{250}*\left( 93,7 - 90,06 \right) = 92,24\ m.n.p.m$