15


$$2\overset{\overline{}}{r} = 3,706\ \rightarrow \ \overset{\overline{}}{r} = 1,853$$

$\overset{\overline{}}{t} = 2,141\ s$ l = 60cm


$$\eta = \frac{2r^{2} \bullet t}{9 \bullet l} \bullet \left( \rho_{k} - \rho_{c} \right) \bullet g = \ \frac{2 \bullet \left( 1,853 \bullet 10^{- 3} \right)^{2} \bullet 2,141}{9 \bullet 0,6} \bullet \left( 11370 - 1250 \right) \bullet 9,81 = 0,2703044912\ \approx 0,270\ \frac{\text{kg}}{m \bullet s}$$


$$\frac{\mathbf{m}^{\mathbf{2}}\mathbf{\bullet s}}{\mathbf{m}}\mathbf{\bullet}\frac{\mathbf{\text{kg}}}{\mathbf{m}^{\mathbf{3}}}\mathbf{\bullet}\frac{\mathbf{m}}{\mathbf{s}^{\mathbf{2}}}\mathbf{=}\frac{\mathbf{\text{kg}}}{\mathbf{m \bullet s}}$$


$$2\overset{\overline{}}{r} - 2r_{1}$$

ε1 = 0, 456

ε21 = 0, 207936

ε2 = −0, 244

ε22 = 0, 059536

ε3 = −0, 394

ε23 = 0, 155236

ε4 = 0, 066

ε24 = 0, 004356

ε5 = 0, 006

ε25 = 0, 000036

ε6 = −0, 244

ε26 = 0, 059536

ε7 = 0, 606

ε27 = 0, 367236

ε8 = 0, 336

ε28 = 0, 112896

ε9 = −0, 094

ε29 = 0, 008836

ε10 = −0, 494

ε210 = 0, 244036


$$\sum_{i = 1}^{10}{\varepsilon i^{2} = 1,21964}$$


$$U_{A}\left( 2r \right) = \ \sqrt{\frac{\sum_{}^{}{\varepsilon^{2}}_{i}}{n\left( n - 1 \right)} =}\sqrt{\frac{1,21964}{90} =}0,116411mm$$


$$U_{B}\left( 2r \right) = \ \frac{2r}{\sqrt{3}} = \frac{0,01}{\sqrt{3}} = 0,005774mm$$


$$U_{c}\left( 2r \right) = \sqrt{{U^{2}}_{A} + {U^{2}}_{B}} = \ \sqrt{\left( 0,116411 \right)^{2} + \left( 0,005774 \right)^{2}} = = 0,116554mm$$


$$U_{c}\left( r \right) = \ \frac{1}{2}U_{c}\left( 2r \right) = \frac{1}{2} \bullet 0,116554 = 0,058277mm = 0,058277 \bullet 10^{- 3}m = 5,8277 \bullet 10^{- 5}m$$


$$\overset{\overline{}}{t} - t_{1}$$

ε1 = −0, 169

ε21 = 0, 028561

ε2 = −0, 049

ε22 = 0, 002401

ε3 = 0, 081

ε23 = 0, 006561

ε4 = 0, 101

ε24 = 0, 010201

ε5 = −0, 009

ε25 = 0, 000081

ε6 = 0, 141

ε26 = 0, 019881

ε7 = −0, 109

ε27 = 0, 006241

ε8 = −0, 079

ε28 = 0, 006241

ε9 = −0, 019

ε29 = 0, 000361

ε10 = 0, 111

ε210 = 0, 012321


$$\sum_{i = 1}^{10}{\varepsilon i^{2} = 0,09285}$$


$$U_{A}\left( 2r \right) = \ \sqrt{\frac{\sum_{}^{}{\varepsilon^{2}}_{i}}{n\left( n - 1 \right)} =}\sqrt{\frac{0,09285}{90} =}0,032119s$$


$$U_{B}\left( 2r \right) = \ \frac{2r}{\sqrt{3}} = \frac{0,01}{\sqrt{3}} = 0,115470s$$


$$U_{c}\left( 2r \right) = \sqrt{{U^{2}}_{A} + {U^{2}}_{B}} = \ \sqrt{\left( 0,032119 \right)^{2} + \left( 0,115470 \right)^{2}} = 0,119853s$$


$$U_{C}\left( l \right) = U_{B}\left( l \right) = \frac{l}{\sqrt{3}} = \frac{1}{\sqrt{3}} = 0,5774mm = 0,5774 \bullet 10^{- 3}m = 5,774 \bullet 10^{- 4}m$$


$$\frac{\mathbf{\partial\eta}}{\mathbf{\partial r}}\mathbf{=}\frac{\mathbf{2}\mathbf{l}}{\mathbf{9}\mathbf{l}}\left( \mathbf{\rho}_{\mathbf{k}}\mathbf{-}\mathbf{\rho}_{\mathbf{c}} \right)\frac{\mathbf{\partial}}{\mathbf{\partial r}}\left( \mathbf{r}^{\mathbf{2}} \right)\mathbf{=}\frac{\mathbf{2 \bullet 2}\mathbf{r \bullet t}}{\mathbf{9}\mathbf{l}}\mathbf{(}\mathbf{\rho}_{\mathbf{k}}\mathbf{-}\mathbf{\rho}_{\mathbf{c}}\mathbf{) \bullet g}$$


$$\frac{\partial\eta}{\partial r} = \frac{4rt}{9l}\left( \rho_{c} - \rho_{k} \right) \bullet g = \frac{4 \bullet 1,853 \bullet 10^{- 3} \bullet 2,141}{5,4} \bullet \left( 11370 - 1250 \right) \bullet 9,81 = 291,7479667 = 2,917479 \bullet 10^{2}$$


$$\left( \frac{\partial\eta}{\partial r} \right)^{2} = 85116,83715 = 8,511683 \bullet 10^{4}$$


$$\frac{\partial\eta}{\partial t} = \frac{2r^{2}}{9l}\left( \rho_{c} - \rho_{k} \right) \bullet g = \frac{2\left( 1,853 \bullet 10^{- 3} \right)^{2}}{5,4} \bullet \left( 11370 - 1250 \right) \bullet 9,81 = 0,1262515139 = 1,262515 \bullet 10^{- 1}$$


$$\left( \frac{\partial\eta}{\partial t} \right)^{2} = 0,01593944 = 1,593944 \bullet 10^{- 2}$$


$$\frac{\partial\eta}{\partial l} = \frac{2r^{2} \bullet t}{9l^{2}}\left( \rho_{c} - \rho_{k} \right) \bullet g = \frac{2\left( 1,853 \bullet 10^{- 3} \right)^{2} \bullet 2,141}{3,24} \bullet \left( 11370 - 1250 \right) \bullet 9,81 = 0,450507 = 4,50507 \bullet 10^{- 1}$$


$$\left( \frac{\partial\eta}{\partial l} \right)^{2} = 0,202956 = 2,02956 \bullet 10^{- 1}$$


U2C(r) = 3, 396208 • 10−9


U2C(l) = 3, 333907 • 10−7


U2C(t) = 0, 01436474161 = 1, 436474 • 10−2


$$U_{c}\left( \eta \right) = \sqrt{\left( \frac{\partial\eta}{\partial r} \right)^{2} \bullet {U^{2}}_{c}\left( r \right) + \left( \frac{\partial\eta}{\partial l} \right)^{2} \bullet {U^{2}}_{c}\left( l \right) + \left( \frac{\partial\eta}{\partial t} \right)^{2} \bullet {U^{2}}_{c}\left( t \right) =} = \sqrt{8,511683 \bullet 10^{4} \bullet 3,396208 \bullet 10^{- 9} + 2,02956 \bullet 10^{- 1} \bullet 3,333907 \bullet 10^{- 7} + 1,593944 \bullet 10^{- 2} \bullet 1,436474 \bullet 10^{- 2}} = \sqrt{2,89074459 \bullet 10^{- 4} + 6,76636429 \bullet 10^{- 8} + 2,2896591 \bullet 10^{- 4}} = \sqrt{5,181080326 \bullet 10^{- 4}} = 0,02276198657 = 2,276198 \bullet 10^{- 2} = 0,02276198657 \approx 0,023\ \frac{\text{kg}}{m \bullet s}\ $$


$$\eta = (0,270 \pm 0,023)\frac{\text{kg}}{m \bullet s}\ $$


Wyszukiwarka

Podobne podstrony:
wyklad 14 15 2010
wyklad badania mediow 15 i 16
15 ROE
15 Sieć Następnej Generacjiid 16074 ppt
wyklad 15 chemiczne zanieczyszczenia wod 2
Wykład 1 15
15 Uklady PLL i t s
Ćwiczenia i seminarium 1 IV rok 2014 15 druk
15 Fizjologiczne funkcje nerek
wykład 15 bezrobocie 2013
ustawa o dzialalnosci leczniczej z 15 kwietnia 2011
15 Wyposażenie Auta 1 33
Giddens środa 17 15
15 10 2010 Polityka przemysłowa i polityka wspierania konkurencjiid 16086 ppt

więcej podobnych podstron