RÓWNANIA I NIERÓWNOŚCI
-5x+3=7x+8
6(x+4)=-3(-2x-5)
3(x+2)-7(2-3x)=8(x-3)
-4(2x-5)=2(3x+7)
X(x-3)=(x+2)2
15(x + 2) = 6(2x + 7)
5(x + 3) = 8(10 – x)
8(3x – 2) – 13x = 5(12 – 3x) + 7x
2(2x + 3) = 8(1 – x) – 5(x – 2)
17(2 – 3y) – 5(y + 12) = 8( 1 – 7y)
2x - $\frac{2}{5}x = \frac{3}{2}x - \frac{1}{2}$
$\frac{x + 4}{5} = x - 5$
$\frac{5 - 2x}{7} - \frac{6 - 5x}{2} = 3 - x$
$\frac{2}{5}\left( 3 - 5x \right) + \frac{2x - 1}{4} = 2x$
$\frac{x + 2}{3} - \frac{3 - x}{6} = - 1$
$\frac{2}{3}\left( 1 - x \right) - \ \frac{3}{4}\left( 2 - 3x \right) = \frac{5}{6}$
$\frac{1}{3}\left( 5x + 2 \right) - 2\left( \frac{1}{2}x + \frac{1}{3} \right) = \frac{2}{3}x$
$- \frac{2}{5}\left( 3 - 2x \right) = 0,1\left( 4x + 1 \right)$
$\frac{2}{3}x - 13 = \frac{1}{3}\left( x + 9 \right)$
$\frac{3}{5}\left( 2x - 7 \right) = \frac{7}{15}\left( 3 + x \right)$
$\frac{1}{2}\left( x + 3 \right) = 2x - 4$
$\frac{5x - 2}{2} + \frac{3x - 7}{6} = \frac{1}{\begin{matrix} 2 \\ \\ \end{matrix}}$
$\frac{5x - 4}{6} - \frac{7 - 2x}{2}$=0
3-2(5-3x)=1+6(x+1)
(x-3)2-(x-5)2=-2
4(x+$\frac{1}{\ 2})$2=(2x-3)(2x+3)
$\frac{x}{4} = \frac{3}{5}$
$\frac{x + 5}{3} = \frac{x}{2}$
$\frac{2x - 3}{x - 1} = 1$
$\frac{3x + 2}{2x - 3} = 1$
$\frac{x + 7}{2x - 8} = 2$
$\frac{3 + 2x}{2x - 1} = 3$
$\frac{1 - 3x}{3x + 5} = 1$
$\frac{2x + 5}{7 - 3x} = 2$
$\frac{15}{2x - 7} = \frac{4}{x}$
$\frac{3}{5 - 3x} = \frac{- 5}{2x - 3}$
$\frac{4}{x + 9} = \frac{2}{2x - 3}$
$\frac{2x - 5}{x + 1} = \frac{5}{3}$
$\frac{2(x + 5)}{4} = \frac{5(3 - x)}{8}$
$\frac{3 + x}{x - 2} = \frac{5 - x}{- x + 1}$
$\frac{7}{7x - 10} = \frac{5}{5x - 20}$
$\frac{x - 2}{- x} = \frac{1 - x}{x - 2}$
$\frac{0,7x + 5}{7} = 0,1(x + \frac{2}{7})$
$\ 2 - \frac{4x - 5}{5} = 1,9 - \frac{1 - x}{2}$
-5x + 2 ≥ 3(2−x)
X + 2 > 2x – 1
2x < x + 3
$\frac{3}{2}x + 1 > \frac{1}{2} + x$
2(x +$\frac{1}{\ 2}) \leq 3x - 4$
2(x – 1) – (x + 3) ≥1
$\frac{3 - x}{2} - \frac{2x - 1}{2} > 0,3x + 0,7$
$\frac{2x - 3}{3} - \frac{x + 2}{2} < x - \frac{5}{6}$
4x – 3 $\geq 2x - \frac{5(x - 1)}{6}$
2x-$\frac{5(x - 1)}{2} \leq 1 + \frac{x}{3}$
5,3 + x > − 10(0, 3 − 0, 2x)
-2( x + 6) > 4(3 + 2x)
3( 2 – x )$\leq - \frac{2}{3}(6x - 21)$
-0,1( 10x + 45 )<0,5(1 - 2x )
( 5x-2)2 + (4-5x)(4+5x)≤0
$\frac{2}{3}\left( 2 - x \right) - \frac{1}{2}(2x + 5) \geq \frac{5}{6}( - x - 3)$
($\frac{1}{2}x + 5)$2 – ($\frac{1}{\ 2}x - 5)$2 >0
(3-2x)(3+2x)>(4x+1)(2-x)
$\frac{6 - 3x}{2} \geq 5x - \frac{3}{2}$
1- $\frac{2x + 5}{3} < 3$
$\frac{5x + 1}{2} \geq \frac{2 - 5x}{- 3}$
$\frac{3x + 5}{- 3} > \frac{21 - \frac{1}{3}x}{- 5}$