Dioda Zenera zachowuje się w kierunku przewodzenia jak dioda, ale ma bardzo dokładnie określone napięcie przebicia w kierunku wstecznym. Diod tych używa się do pracy w kierunku zaporowym i wykorzystuje się tzw. napięcie Zenera tj. napięcie, przy którym prąd wsteczny diody gwałtownie rośnie. Dlatego szeregowo z diodą Zenera należy łączyć rezystor lub inny element ograniczający prąd.
Dioda Zenera ma precyzyjnie określone napięcie przebicia. Charakterystyka diody w kierunku zaporowym musi wykazać bardzo wyraźne przegięcie. Poza tym zmiany napięcia Zenera w funkcji temperatury powinny być możliwie małe. Najlepsze parametry termiczne mają diody w zakresie napięć Zenera 5,6 - 6,2 V. Dla napięć niższych współczynnik temperaturowy napięcia Zenera jest ujemny, dla napięć wyższych dodatni. Często dla otrzymania elementów stabilizacyjnych o bardzo małym współczynniku temperaturowym napięcia, łączy się diody o dodatnim i ujemnym współczynniku w celu ich wzajemnej kompensacji. Czasami łączy się zwykłą diodę krzemową (posiada ujemny współczynnik temperaturowy przy pracy w kierunku przewodzenia) produkowaną seryjnie, z wysokonapięciową diodą Zenera. Wypadkowa rezystancja szeregowa diod, powoduje jednak, że charakterystyka przebicia Zenera będzie mniej stroma. Istnieją również diody stabilizacyjne o napięciu poniżej 2 V. Noszą nazwę stabilitronów. Są to diody pracujące w kierunku przewodzenia, nie są więc diodami Zenera.
Diody zabezpieczające są w zasadzie diodami Zenera, które tłumią krótkotrwałe napięciowe impulsy zakłócające. Używa się ich do ochrony elementów i układów elektronicznych. Ograniczanie maksymalnego napięcia jest precyzyjne i bardzo szybkie. Diody wytrzymują wysokie prądy chwilowe, które powstają przy ograniczaniu przepięć.