Materiał | Siły skupione | Długość przedziałów | Kąty | Obciążenie ciągłe | Moment |
---|---|---|---|---|---|
N/m2 | kN | m | o | kN/m | kNm |
kg | P1 | P2 | P3 | a | b |
11,5 . 107 | 8 | 10 | 0,4 | 0,3 |
$$\sum_{}^{}P_{\text{ix}} = 0\overset{\rightarrow}{\ }P_{1x} + R_{\text{Ax}} - P_{2x} = 0\overset{\rightarrow}{\ }P_{1}cos30 + R_{\text{Ax}} - P_{2}\cos 75 = 0$$
P1x = 6, 9282 kN
P2x = 2, 5882 kN
RAx = −4, 3400 kN
$$\sum_{}^{}P_{\text{iy}} = 0\overset{\rightarrow}{\ }{P_{1y} - Q_{1} + R}_{\text{Ay}} + R_{B} - Q_{2} - P_{2y} = 0\overset{\rightarrow}{\ }$$
$$\overset{\rightarrow}{\ }P_{1}sin30{- qa + R}_{\text{Ay}} + R_{B} - qc - P_{2}\sin 75 = 0$$
P1y = 4, 0000 kN
Q1 = 2, 0000 kN
Q2 = 1, 5000 kN
P2y = 9, 6593 kN
$$\sum_{}^{}M_{A} = 0\overset{\rightarrow}{\ } - 2M + P_{1y}a - Q_{1}\frac{a}{2} + M - R_{B}b + Q_{2}\left( b + \frac{c}{2} \right)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } + P_{2y}\left( b + c \right) = 0$$
RB = 12, 2352 kN
RAy = −3, 0759 kN, $\text{\ \ }R_{A} = \sqrt{{R_{\text{Ax}}}^{2} + {R_{\text{Ay}}}^{2}}$, $\ \ tg\gamma = \frac{R_{\text{Ay}}}{R_{\text{Ax}}}$
RA = 5, 3195 kN, γ = 3520′
0 ≤ x1 ≤ a
$$M_{\text{gI}} = - 2M + P_{1y} \bullet x_{1} - q\frac{{x_{1}}^{2}}{2}$$
$$T_{I} = \frac{dM_{\text{gI}}}{\text{dx}} = P_{1y} - q \bullet x_{1}$$
a ≤ x2 ≤ a + b
$$M_{\text{gII}} = - 2M + P_{1y} \bullet x_{2} - qa\left( x_{2} - \frac{a}{2} \right) + R_{\text{Ay}}\left( x_{2} - a \right)$$
$$T_{\text{II}} = \frac{dM_{\text{gII}}}{\text{dx}} = P_{1y} - qa + R_{\text{Ay}}$$
a + b ≤ x3 ≤ a + b + c
$$M_{\text{gIII}} = - 2M + P_{1y} \bullet x_{3} - qa\left( x_{3} - \frac{a}{2} \right) + R_{\text{Ay}}\left( x_{3} - a \right) + M\ \ \ \ \ + R_{B}\left( x_{3} - \left( a + b \right) \right)\ - q\frac{\left( x_{3} - \left( a + b \right) \right)^{2}}{2}$$
$$T_{\text{III}} = \frac{dM_{\text{gIII}}}{\text{dx}} = P_{1y} - \ qa + R_{\text{Ay}} + R_{B} - q \bullet \left( x_{3} - \left( a + b \right) \right)$$
$$\left\{ \begin{matrix}
\begin{matrix}
M_{\text{gI}}\left| \begin{matrix}
\ \\
\ _{x_{1} = 0} \\
\end{matrix} = - 8,0000\ kN \bullet m \right.\ \\
M_{\text{gI}}\left| \begin{matrix}
\ \\
\ _{x_{1} = a} \\
\end{matrix} = - 6,8000\ kN \bullet m \right.\ \\
\end{matrix} \\
\begin{matrix}
T_{I}\left| \begin{matrix}
\ \\
\ _{x_{1} = 0} \\
\end{matrix} = 4,0000\text{\ kN} \right.\ \\
T_{I}\left| \begin{matrix}
\ \\
\ _{x_{1} = a} \\
\end{matrix} \right.\ = 2,0000\text{\ kN} \\
\end{matrix} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
M_{\text{gII}}\left| \begin{matrix}
\ \\
\ _{x_{2} = a} \\
\end{matrix} = - 6,8000\ kN \bullet m \right.\ \\
M_{\text{gII}}\left| \begin{matrix}
\ \\
\ _{x_{2} = a + b} \\
\end{matrix} = - 7,1228\ kN \bullet m \right.\ \\
T_{\text{II}}\left| \begin{matrix}
\ \\
\ _{x_{2} = a} \\
\end{matrix} = T_{\text{II}}\left| \begin{matrix}
\ \\
\ _{x_{2} = a + b} \\
\end{matrix} = \right.\ - 1,0759\text{\ kN} \right.\ \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\begin{matrix}
M_{\text{gIII}}\left| \begin{matrix}
\ \\
\ _{x_{3} = a + b} \\
\end{matrix} = - 3,1228\ kN \bullet m \right.\ \\
M_{\text{gIII}}\left| \begin{matrix}
\ \\
\ _{x_{3} = a + b + c} \\
\end{matrix} = 0,0000\ kN \bullet m \right.\ \\
\end{matrix} \\
\begin{matrix}
T_{\text{III}}\left| \begin{matrix}
\ \\
\ _{x_{3} = a + b} \\
\end{matrix} = 11,1593\ kN \right.\ \\
T_{\text{III}}\left| \begin{matrix}
\ \\
\ _{x_{3} = a + b + c} = 9,6593\text{\ kN} \\
\end{matrix} \right.\ \\
\end{matrix} \\
\end{matrix} \right.\ $$
$$\left| M_{g_{\max}} \right| = \left| M_{\text{gI}}\left| \begin{matrix}
\ \\
\ _{x_{2} = 0} \\
\end{matrix} \right.\ \right| = 8,0000\ kNm$$
Pixmax = 6, 9282 kN
S(xs,ys), xs = 0
SI(xI,yI), xI = 0, yI = 2a, AI = 8a2
SII(xII,yII), xII = 0, $y_{\text{II}} = 4\frac{1}{3}a,$ AII = a2
SIII(xIII,yIII), xIII = 0, yIII = 2a, AIII = a2
$$y_{s} = \frac{A_{I}y_{I} + A_{\text{II}}y_{\text{II}} - A_{\text{III}}y_{\text{III}}}{A_{I} + A_{\text{II}} - A_{\text{III}}} = 2,2927a$$
Ibxs = IbxsI + IbxsII − IbxsIII
$$I_{bx_{\text{sI}}} = I_{\text{bx}} + A_{I}\left( y_{I} - y_{s} \right)^{2} = \frac{2a\left( 4a \right)^{3}}{12} + 8a^{2}\left( 2a - 2,2927a \right)^{2} = 11,3521a^{4}$$
$$I_{bx_{\text{sII}}} = I_{\text{bx}} + A_{\text{II}}\left( y_{\text{II}} - y_{s} \right)^{2} = \frac{a{\bullet a}^{3}}{18} + a^{2}\left( 4\frac{1}{3}a - 2,2927a \right)^{2} =$$
= 4, 2197a4
$$I_{bx_{\text{sIII}}} = I_{\text{bx}} + A_{\text{III}}\left( y_{\text{III}} - y_{s} \right)^{2} = \frac{a^{4}}{12} + a^{2}\left( 2a - 2,2927a \right)^{2} =$$
= 0, 1690a4
Ibxs = 15, 4028a4
$$\sigma_{g} = \frac{\left| M_{g_{\max}} \right|}{W_{g}} \leq k_{g}$$
$$W_{g} = \frac{I_{bx_{s}}}{e}$$
e = 5a − 2, 2927a = 2, 7073a
Wg = 5, 6894a3
$$a \geq \sqrt[3]{\frac{\left| M_{g_{\max}} \right|}{5,6894 \bullet k_{g}}} \geq 0,0230\text{\ m}$$
a = 0, 025 m
A = AI + AII − AIII = 8a2 + a2 − a2
= 5, 0000 • 10−3 m2
Wg = 8, 8897 • 10−5 m3
$$\sigma_{z} = \sigma_{g} \mp \sigma_{\frac{r}{s}} \leq k_{g}$$
$$\sigma_{g} = \frac{\left| M_{g} \right|}{W_{g}}$$
$$\sigma_{\frac{r}{s}} = \frac{P_{\text{ix}}}{A}$$
$$\sigma_{\text{g\ max}}\left| \begin{matrix}
\ \\
\ _{x_{1} = 0} \\
\end{matrix} \right.\ = \frac{\left| M_{\text{g\ max}} \right|}{W_{g}} = 8,9992 \bullet 10^{7}\frac{N}{m^{2}} < k_{g}$$
$$\sigma_{\frac{r}{s}\text{\ max}}\left| \begin{matrix}
\ \\
\ _{x_{1} = 0} \\
\end{matrix} \right.\ = \frac{6928,2}{A} = 0,1386 \bullet 10^{7}\frac{N}{m^{2}} < k_{g}$$
$$\sigma_{z\text{\ max}}\left| \ _{x_{1} = 0} \right.\ = 9,1378 \bullet 10^{7}\frac{N}{m^{2}} < k_{g}$$
$$E = 2,1 \bullet 10^{11}\frac{N}{m^{2}}$$
Ibxs = 6, 0167 • 10−6 m4
y dla x = 0
$$EI_{\text{bx}}y" = - Mg$$
$$- 2M + P_{1y} \bullet x_{3} - qa\left( x_{3} - \frac{a}{2} \right) + R_{\text{Ay}}\left( x_{3} - a \right) + M\ \ \ \ \ + R_{B}\left( x_{3} - \left( a + b \right) \right)\ - q\frac{\left( x_{3} - \left( a + b \right) \right)^{2}}{2}$$
$$EI_{\text{bx}}y^{''} = - \left\lbrack - 2M + P_{1y} \bullet x_{1} - q\frac{{x_{1}}^{2}}{2}\left| \begin{matrix}
\ \\
\ _{I} \\
\end{matrix} \right.\ + R_{\text{Ay}}\left( x_{2} - a \right) + q\frac{\left( x_{2} - a \right)^{2}}{2}\left| \begin{matrix}
\ \\
\ _{\text{II}} \\
\end{matrix} \right.\ + M + R_{B}\left( x_{3} - \left( a + b \right) \right)\ - q\frac{\left( x_{3} - \left( a + b \right) \right)^{2}}{2}\left| \begin{matrix}
\ \\
\ _{\text{III}} \\
\end{matrix} \right.\ \right\rbrack$$
$$EI_{\text{bx}}y' = - \left\lbrack C - 2Mx_{1} + P_{1y}\frac{{x_{1}}^{2}}{2} - q\frac{{x_{1}}^{3}}{6}\left| \begin{matrix}
\ \\
\ _{I} \\
\end{matrix} \right.\ + R_{\text{Ay}}\frac{\left( x_{2} - a \right)^{2}}{2} + q\frac{\left( x_{2} - a \right)^{3}}{6}\left| \begin{matrix}
\ \\
\ _{\text{II}} \\
\end{matrix} \right.\ + M\left( x_{3} - \left( a + b \right) \right) + R_{B}\frac{\left( x_{3} - \left( a + b \right) \right)^{2}}{2}\ - q\frac{\left( x_{3} - \left( a + b \right) \right)^{3}}{6}\left| \begin{matrix}
\ \\
\ _{\text{III}} \\
\end{matrix} \right.\ \right\rbrack$$
$$EI_{\text{bx}}y = - \left\lbrack D + Cx - 2M\frac{{x_{1}}^{2}}{2} + P_{1y}\frac{{x_{1}}^{3}}{6} - q\frac{{x_{1}}^{4}}{24}\left| \begin{matrix}
\ \\
\ _{I} \\
\end{matrix} \right.\ + R_{\text{Ay}}\frac{\left( x_{2} - a \right)^{3}}{6} + q\frac{\left( x_{2} - a \right)^{4}}{24}\left| \begin{matrix}
\ \\
\ _{\text{II}} \\
\end{matrix} \right.\ + M\frac{\left( x_{3} - \left( a + b \right) \right)^{2}}{2} + R_{B}\frac{\left( x_{3} - \left( a + b \right) \right)^{3}}{6}\ - q\frac{\left( x_{3} - \left( a + b \right) \right)^{4}}{24}\left| \begin{matrix}
\ \\
\ _{\text{III}} \\
\end{matrix} \right.\ \right\rbrack$$
dla x = a, y = 0
dla x = a + b, y = 0
C = 3, 9695kNm2
D = −0, 9851 kNm3
$$y\left| \begin{matrix}
\ \\
\ _{x = 0} \\
\end{matrix} \right.\ = \frac{- 1}{EI_{\text{bx}}}\left\lbrack 1,4655 - 2,1571x - 2M\frac{{x_{1}}^{2}}{2} + P_{1y}\frac{{x_{1}}^{3}}{6} - q\frac{{x_{1}}^{4}}{24}\left| \begin{matrix}
\ \\
\ _{I} \\
\end{matrix} \right.\ + R_{\text{Ay}}\frac{\left( x_{2} - a \right)^{3}}{6} + q\frac{\left( x_{2} - a \right)^{4}}{24}\left| \begin{matrix}
\ \\
\ _{\text{II}} \\
\end{matrix} \right.\ + M\frac{\left( x_{3} - \left( a + b \right) \right)^{2}}{2} + R_{B}\frac{\left( x_{3} - \left( a + b \right) \right)^{3}}{6}\ - q\frac{\left( x_{3} - \left( a + b \right) \right)^{4}}{24}\left| \begin{matrix}
\ \\
\ _{\text{III}} \\
\end{matrix} \right.\ \right\rbrack$$
y = 0, 8 • 10−3 m