Niepewności:
$u\left( Q \right) = \frac{\text{dz}}{\sqrt{3}} = \frac{1}{\sqrt{3}}\left\lbrack \frac{l}{\min} \right\rbrack = \frac{0,00001667}{\sqrt{3}}\left\lbrack \frac{m^{3}}{s} \right\rbrack = 0,000009624\left\lbrack \frac{m^{3}}{s} \right\rbrack$
$u\left( v \right) = \sqrt{\left( \frac{\partial v}{\partial Q} \right)^{2}*{u\left( Q \right)}^{2}} = \sqrt{\left( \frac{1}{A} \right)^{2}*{u(Q)}^{2}}$
$u\left( \text{Re} \right) = \sqrt{\left( \frac{\partial\text{Re}}{\partial v} \right)^{2}*{u\left( v \right)}^{2}{+ \left( \frac{\partial\text{Re}}{\partial\upsilon} \right)}^{2}*{u\left( \upsilon \right)}^{2}} = \ \sqrt{\left( \frac{D}{\upsilon} \right)^{2}*{u\left( v \right)}^{2}{+ \left( \frac{- \text{Dv}}{\upsilon^{2}} \right)}^{2}*{u\left( \upsilon \right)}^{2}}$
u(υ)=Y [m2/s]
u(T)=$\frac{\text{dz}}{\sqrt{3}} = \frac{1}{\sqrt{3}} = 0,5774$°
Z proporcji:
14°-0,5774°
X(z tablic) [m2/s]- Y(wyliczyć)[m2/s]
u(Δhl)=$\sqrt{\left( \frac{\partial\text{Δhl}}{\partial L} \right)^{2}*{u\left( \text{Lewy} \right)}^{2}{+ \left( \frac{\partial\text{Δhl}}{\partial P} \right)}^{2}*{u\left( \text{Prawy} \right)}^{2}} = \sqrt{{u\left( \text{Lewy} \right)}^{2} + {u(Prawt)}^{2}}\left\lbrack \text{bar} \right\rbrack = ??????\lbrack m\rbrack$
u-dla miernika elektronicznego: $u\left( L \right) = u(P) = \frac{\text{dz}}{\sqrt{3}} = \frac{0,001}{\sqrt{3}} = 0,0005774$
u-dla manometry zwyczajnego: $u\left( L \right) = u(P) = \frac{\text{dz}}{\sqrt{3}} = \frac{0,1}{\sqrt{3}} = 0,05774$
$u\left( \lambda \right) = \sqrt{\left( \frac{\partial\lambda}{\partial\text{Δhl}} \right)^{2}*{u\left( \text{Δhl} \right)}^{2}{+ \left( \frac{\partial\lambda}{\partial v} \right)}^{2}*{u\left( v \right)}^{2}{+ \left( \frac{\partial\lambda}{\partial L} \right)}^{2}*{u\left( L \right)}^{2}} = \sqrt{\left( \frac{2\text{Dg}}{v^{2}*L} \right)^{2}*{u\left( \text{Δhl} \right)}^{2}{+ \left( \frac{- \Delta hl*D*4*g}{L*v} \right)}^{2}*{u\left( v \right)}^{2}{+ \left( \frac{- \Delta hl*D*2*g}{v^{2}*L^{2}} \right)}^{2}*{u\left( L \right)}^{2}}$
$$u\left( L \right) = \frac{\text{dz}}{\sqrt{3}} = \frac{0,001}{\sqrt{3}} = 0,0005774\lbrack m\rbrack$$
$u\left( \text{Δhm} \right) = \sqrt{\left( \frac{\partial\Delta\text{hm}}{\partial\text{hc}} \right)^{2}*{u\left( \text{hc} \right)}^{2}{+ \left( \frac{\partial\Delta\text{hm}}{\partial\text{hl}} \right)}^{2}*{u\left( \text{hl} \right)}^{2}} = \sqrt{{u\left( \text{hc} \right)}^{2} + {u(hl)}^{2}}$
$u\left( \varsigma \right) = \sqrt{\left( \frac{\partial\varsigma}{\partial\Delta hm} \right)^{2}*{u\left( \text{Δhm} \right)}^{2}{+ \left( \frac{\partial\varsigma}{\partial v} \right)}^{2}*{u\left( v \right)}^{2}} = \sqrt{\left( \frac{2g}{v^{2}} \right)^{2}*{u\left( \text{Δhm} \right)}^{2}{+ \left( \frac{{- \Delta h}_{m*4*g}}{v^{3}} \right)}^{2}*{u\left( v \right)}^{2}}$