Ortodroma jest krótszym łukiem koła wielkiego przechodzącego przez dwa punkty (AB) na powierzchni Kuli Ziemskiej.
Ortodroma jest najkrótszą drogą między dwoma punktami na powierzchni Kuli Ziemskiej. Jest linią krzywą, wypukłością skierowana ku biegunowi.
Przebieg ortodromy na mapie Merkatora
Elementy ortodromy:
KDdo – kąt drogi ortodromy na równiku
λo – dł. geograficzna ortodromy na równiku
KDdp i KDdk – początkowy i końcowy kąt drogi po ortodromie
W1 i W2 – wierzchołki na ortodromie
Największy zysk na odległości uzyskujemy gdy punkt wyjścia i przeznaczenia leżą na tej samej szerokości, ale nie na równiku i kiedy różnica długości jest duża. Najmniejszy zysk mamy gdy punkty A i B leżą na małych szerokościach.
Wady: Ortodroma jest linią krzywą, duże zniekształcenia przy przedstawianiu obszarów w wysokich szerokościach geograficznych, trudny pomiar odległości na mapach w małej skali, zniekształcenia powierzchni na mapach o małej skali.
Zalety: Najkrótsza linia miedzy dwoma punktami, żegluga po ortodromie zwiększa zysk niż po loksodromie.
Elementami Δ sferycznego są:
bok AB - droga po ortodromie
bok APn - dopełnienie szerokości punktu A
bok BPn - dopełnienie szerokości punktu B
α - kurs początkowy
β - kurs końcowy
rλ - różnica długości punktu A i B
W przypadku map gnomonicznych wszystkie wielkie koła (południki, ortodromy) są prostymi, wszystkie równoleżniki są krzywymi (kołami w rzucie biegunowym, albo elipsami i parabolami w zależności od szerokości równoleżnika i punktu styczności), wszystkie kąty (z wyjątkiem prostych i tych których wierzchołki leżą w punkcie styczności) są zniekształcone. Pomiar odległości wykonuje się za pomocą podanych na mapie podziałek.
Mapy gnomoniczne służą do graficznego rozwiązywania problemów żeglugi po ortodromie. Kiedyś były też wykorzystywane do określania pozycji przy pomocy radionamiarów.
Mapy gnomoniczne służą do graficznego rozwiązywania problemów żeglugi po ortodromie.