egzamin z dnia 9.05.2011
1. Wyznacz H dla jakich woda zacznie siê wylewaÌ (klapa siê przechyli). Dane b - odleglosc od srodka klapy, a x h - wymiary klapy (wielkoœÌ dzeta zosta³a wprowadzona w celu szybkiego rozwi¹zania zadania - oznacza odleg³oœÌ od œrodka klapy punktu w którym równowa¿¹ siê momenty dzia³aj¹ce na praw¹ i lew¹ czêœÌ klapy)
2. WyprowadÂź rĂłwnanie Bernoulliego dla przemiany politropowej o wykÂładniku m, czy energia jest zachowana?
3. Skok ciœnienia na pompie wynosi p, przed pomp¹ ciœnienie wynosi pn (ciœnienie nasycenia). Oblicz maksymaln¹ d³ugoœÌ L po jakiej trzeba zamontowaÌ kolejn¹ pompê. Dane: D, m (mi), q (gestosc), p, pn, Q
4. Zbiornik z powietrzem o ciœnieniu pa zanurzono na g³êbokoœci h, wyznacz reakcjê po wykonaniu w nim otworu o polu powierzchni A.
5. Narysuj rozkÂład prĂŞdkoÂści w rurze dla przepÂływu o maÂłym i duÂżym wydatku, jakbyÂś nazwaÂł te prĂŞdkoÂści?
zerowka 27.01.2010
1. dane pole prĂŞdkoÂści, napiac rownienie ruchu dla jednej skladowej w formie w peÂłni rozwiniĂŞtej
2. zad z wirujÂącym zbiornikiem o wys H napeÂłnionym ciecza od ktorego odchodzi przewĂłd o dl L. Dla jakiej pr obrotowej pÂłn zacznie wyplywaĂŚ przez przewĂłd
3. dane pole prĂŞdkoÂści w rurze, jej Âśrednica, staÂła R, ciÂśnienie i temperatura, obliczyĂŚ moc.
4. warunki podobieĂąstwa przeplywĂłw
5. podac df predkosci sredniej w przeplywie turbulentym i rysunek objasniajacy jak ja obliczamy
1. Naczynie wypeÂłnione wodÂą "wisi" na wystajÂącym z sufitu prĂŞcie. pa - ciÂśnienie atmosferyczne, ciÂśnienie nasycenia p*. Wymiary znane. Jaki ciĂŞÂżar moÂżemy co najwyÂżej przyczepiĂŚ do naczynia.
2. Naczynie z otworem o przekroju A znajduje siê w cieczy, ciœnienie otoczenia jest sta³e i wynosi p, a w œrodku p1 wiêksze od nasycenia i ni¿sze od p. (tu trzeba by³o wyznaczyÌ si³ê ale nie dopisa³em do koùca polecenia)
3. Dla pewnej cieczy ro zmienia siĂŞ zgodnie ze wzorem ro = ro0 * (1 + p/p0), p, p0 znane. Napisz rĂłwnanie Bernoulliego dla tej cieczy.
4. Vx = alfa * y + beta * y^2 + gamma * y^3 + ....
Znamy lepkoœÌ kinematyczn¹ i masê w³aœciw¹ w pobli¿u p³askiej p³yty mamy tylko prêdkoœÌ ixow¹. Wyznacz sk³¹dow¹ styczn¹ jednostkowej si³y powierzchniowej.
5. Narysuj wykres przedstawiaj¹cy zmiennoœÌ wielkoœci intensywnej w funkcji czasu w ruchu z du¿ym Reynoldsem.
Definicja i wzĂłr linii prÂądu
2. WypÂływ ze zbiornika poprzez zwĂŞÂżajÂąca siĂŞ dyszĂŞ - wykres wydatku dla:
a) staÂłych parametrĂłw w zbiorniku
b) ciÂśnieniu zewnĂŞtrznym spadajÂącym do 0
3. PrzepÂływ turbulentny i laminarny oraz podaĂŚ co to jest wskaÂźnik turbulencji
4. WypÂływ przez dyszĂŞ o zwiĂŞkszajÂącym siĂŞ przekroju - podaĂŚ kierunek reakcji gazu na dysze i uzasadniĂŚ bez wzorĂłw
5. Samolot leci na maÂłej wysokoÂści potem na duÂżej - jak zmienia siĂŞ Cx i dlaczego
6. Zadanie z reakcjami pÂłynu
ruch pÂłynu jest taki Âże punkty materialne mojÂą poÂłoÂżenia okr. rĂłwnaniami:
x=x0*e^(lambda*t)
y=y0
z=z0
Czy p³yn ten mo¿e miec sta³¹ masê w³aœciw¹?
2)
Napisz wyraÂżenie okreÂślajÂące pochcodnÂą substancjalnÂą ciÂśnienie i przeksztaÂłc je uÂżywajÂąc rĂłwnania eulera
3)
Zdefiniuj wartosc ekstensywnÂą i podaj wyraÂżenie analityczne wielkoÂśc takÂą okreÂślajÂącÂą
4)
Wlot i wylot pompy maj¹ pole o przektoju A. Ciœnienie na g³êbokoœci pompy ( jest zanurzona) wynosi p0. Dla temperatury otoczenia, ciœnienie nasycenia wynosi pk. Jaka co najwy¿ej si³a mo¿e dzia³ac na pompe? (si³a z przep³ywu wody przez wlot i wylot)
5)
Podaj wyraÂżenie okr. naprĂŞÂżenie w pÂłynie lepkim.
6)
Narysuj wykres przedst. rozkÂład prĂŞdkoÂści w rurze okrÂągÂłej dla ruchu laminarnego.
7)
Napisz rĂłwnanie ruchu pÂłynu lepkiego i zaznacz fragment wystĂŞpujÂący wtedy gdy uwaÂża sie pÂłyn za nieÂściÂśliwy.
Podaj szacowanÂą moc potrzebnÂą do przedÂłoÂżenia wydatku Q w rurze o zadanej Âśrednicy. Dane d,lepkoÂśc, gĂŞstoÂśc,L,Q; ruch jest szybki.
9)
Podaj definicje podobieĂąstwa dynamicznego przepÂływu.
10)
Zdefiniuj ruch turbulentny nie wykorzystujÂąc pojĂŞcia liczby Re.
PojĂŞcia Teoretyczne (Linie prÂądu, PÂłyn Newtonowski, konwekcja itp.)
2)LepkoœÌ - Zachowanie - wnioski(warstwa przyœcienna)
3)PotencjaÂł wektora
4)RĂłwnania Eulera, Lagrange'a
5)Ruch Laminarny i turbulentny
6)WirowoœÌ i cyrkulacja zwi¹zki miêdzy cyrkulacj¹ po obwodzie i wirowoœci¹
7)StrumueĂą masy i pĂŞdu
8)WyraÂżenia na siÂły dziaÂłania pod wpÂływem pĂŞdu
9)Liczby podobieĂąstwa
10)Krzywizna linii prÂądu
11)PrzepÂływ Izentropowy i adiabatyczny
12)Dysza zbieÂżna
13)PrzepÂływ tarciem
Ad 1,
Linia prÂądu - nazywamy liniĂŞ, ktĂłra w kazdym swoim punkcie jest styczna do wektora prĂŞdkoÂści odpowiadajÂącemu temu punktowi.
PÂłyn Newtonowski - pÂłyn w ktĂłrym zaleÂżnoœÌ naprĂŞÂżeĂą stycznych (taÂły) od prĂŞdkoÂści odksztaÂłcenia postaciowego(ðU/ðz) - jest liniowa τ = μ *(ðU/ðz)
μ - wspó³czynnik proporcjonalnoÂści (bÂądÂź teÂż lepkoœÌ dynamiczna)
PrzepÂływ laminarny - przepÂływ stateczny - poszczegĂłlne warstwy nie mieszajÂą siĂŞ ze sobÂą a sposĂłb makroskopowo widoczny, ale ÂślizgajÂą siĂŞ po sobie.
Przep³yw turbulentny - odznacza siê niestacjonarnoœci¹ i przypadkowoœci¹; tory poszczególnych elementów p³ynu s¹ ró¿ne; parametry (ciœnienie, prêdkoœÌ, gêstoœÌ) oraz w³asnoœci p³ynu (lepkoœÌ) zmieniaj¹ siê w czasie i przestrzeni. W³aœciwoœci p³ynu zmieniaj¹ siê w sposób przypadkowy tworz¹c mechanizm transportu turbulencji mo¿liwy do opisania przez statyczne uœrednienie. Zawieraj¹ szerokie spektrum wystêpuj¹cych w przep³ywie wirów. Wielkoœci tych wirów okreœlaja skale turbulencji.
Liczby podobieĂąstwa :
(staÂłe jakie pojawiajÂą siĂŞ we wzorach)
l - d³ugoœÌ charakterystyczna
V0 -prêdkoœÌ charakterystyczna
p0- ciÂśnieniem charakterystycznym
T0 - temp. Charakterystyczna
μ0 - lepkoœÌ
λ0 - przewodnoœÌ ciepÂła
cp- ciepÂło wÂłaÂściwe przy staÂłym ciÂśnienieu
cv- ciepÂło wÂłaÂściwe przy staÂłej objĂŞtoÂści
g - przyspieszenie ziemskie
t0- okres czasu charakterystyczny dla zjawiska przepÂływowego
q0- ciepÂło produkowane przez jednostkĂŞ masy gazu w jednostce czasu
A teraz liczby wÂłaÂściwe:
Liczba Reynoldsa Re = ρ0*V0*l / μ0
Przy jej pomocy moÂżna okreÂśliĂŚ stosunek siÂły bezwladnoÂści do siÂł lepkoÂści. Liczba Re jest kryterium do wyznaczania charakterystyki przepÂływĂłw wszelkich pÂłynĂłw nieÂściÂśliwych.
Re <2300 - przepÂływ laminarny
2300<Re<10000 - przepÂływ przejÂściowy (czeÂściowo burzliwy)
Re >1000 - przepÂływ turbulentny
(podane granice sÂą umowne. Nie istniejÂą ich uniwersalne wartoÂści, poniewaÂż zaleÂży to od teego co zostanie uznane za „charakterystyczne w odniesieniu do wilekoÂści v i l, a w przypadku pÂłynĂłw ÂściÂśliwych takÂże ρ , dla pÂłynĂłw nienewtonowskich μ)
Liczba Frouda - Fr = V0/g*l
Opisuje wpÂływ siÂły ciĂŞÂżkoÂści na zjawiska przepÂływu pÂłynu. Intuicyjnie liczba Fr okreÂśla stosunek energii kinetycznej cieczy do energii potencjalnej potrzebnej do odchylenia przepÂływajÂącej cieczy.
Liczba Macha - M(czasem Ma) = V/a
a - prêdkoœÌ dzwieku
1. wersja - stosunek prĂŞdkoÂści przepÂływu pÂłynu w danym miejscu do prĂŞdkoÂści dÂźwiĂŞku w tym pÂłynie w tym samym miejscu.
2 wersja - stosunek prêdkoœci obiektu poruszaj¹cego siê w p³ynie do prêdkoœci dŸwiêku niezak³óconym ruchem obiektu w tym p³ynie
Liczba Eulera - Eu = Δp/ρ*V2
Δp - ró¿nica ciÂśnienia w dwĂłch charakterystycznych punktach przepÂływu
WyraÂża stosunek siÂł ciÂśnieania Δp do siÂł bezwÂładnoÂści ( ρ*V2 - ciÂśnienie dynamiczne odpowiadajÂące energii kinetycznej jednostki objĂŞtoÂści pÂłynu)
Dla przepÂływĂłw o jednakowych liczbach Eu zachodzi podobieĂąstwo dynamiczne.
1. Jak¹ masê powinna mieÌ rura gazowa o œrednicy 1m i d³ugoœci 1m by le¿a³a na dnie morza. GêstoœÌ gazu w rurze pomijamy.
2. PomiĂŞdzy dwoma pÂłytkami jest przepÂływ o przedstawionym polu prĂŞdkoÂści:
________ Zbadaj czy pole przepÂływu jest wirowe czy nie.
-
----
-----
----
-_______
3. Dany jest promieĂą prĂŞdkoÂści: narysowaĂŚ promieĂą ciÂśnienia statycznego, i promieĂą ciÂśnienia caÂłkowitego
-----------
-----------
----------
--------
-________
4. WykazaĂŚ, nie na wzorach jaka jest relacja pomiĂŞdzy reakcjami w trzech przypadkach:
__________...................\ ...............|................/
__________->v.......a)......|......b)......|........c).....| odpowiedÂź uzasadnij.
.................................../...............|...............\
5. ze zbiornika wypÂływa woda przez rurĂŞ, jak zmieni siĂŞ prĂŞdkoœÌ wypÂływu po zwiĂŞkszeniu temperatury w zbiorniku? λ=const.
6. Pole jest potencjalne wiĂŞc ma potencjaÂł. Jak wyraÂżajÂą siĂŞ skÂładowe pola prĂŞdkoÂści przez jego potencjaÂł.
ZapisaĂŚ rĂłwnanie ciÂągÂłoÂści w funkcji potencjaÂłu.