nr ćwicz. 106 |
|
|
Wydział Elektryczny |
Semestr IV |
grupa T3 nr lab. 3 |
prowadzący
|
|
|
przygotowanie |
wykonanie |
ocena ostatecz. |
Temat : Wyznaczanie współczynnika przewodnictwa cieplnego metali.
Przewodnictwo cieplne polega na przekazywaniu ciepła od pewnego elementu ciała do elementów sąsiednich poprzez przekazywanie energii kinetycznej bezładnego ruchu cieplnego od jednych drobin do drugich w wyniku zderzeń.
Rozważmy element pręta o powierzchni przekroju A i długości dx, którego powierzchnie zewnętrzne utrzymywane są w stałych, ale różnych temperaturach.
Strumień ciepła
przepływający przez przekrój pręta określamy jako stosunek ilości ciepła do czasu
(1)
Podstawowe prawo przewodnictwa cieplnego mówi, że strumień ciepła jest proporcjonalny do powierzchni przekroju i do różnicy temperatur na odcinku dx
(2)
nazywamy współczynnikiem przewodnictwa cieplnego, mierzymy go
;
jest gradientem temperatury.
Jeżeli pręt ma stały przekrój i jest doskonale izolowany, to
(3)
Z powyższego równania możemy łatwo odczytać znaczenie współczynnika przewodnictwa cieplnego. Mianowicie, gdy
jest duże, wówczas na utrzymanie stałej różnicy temperatur
trzeba dostarczyć duży strumień ciepła. W przeciwnym przypadku przekazywanie ciepła do zimnego końca jest powolne - do podtrzymania różnicy temperatur wystarczy mały strumień dostarczanego ciepła.
Rozkład temperatury wzdłuż pręta otrzymamy całkując równanie (2) od dowolnego punktu (temp. T) do końca pręta (x = l,
). Wykorzystując przy tym równanie (3) otrzymujemy
(4)
Równanie (4) opisuje rozkład temperatury wzdłuż pręta tylko wtedy, gdy jest on dobrze izolowany.
Gdy powierzchnia boczna nie jest izolowana cieplnie, strumień przepływający przez kolejne powierzchnie jest coraz mniejszy w wyniku ucieczki ciepła do otoczenia. Biorąc pod uwagę, że strumień ciepła przez ściany boczne jest proporcjonalny do różnicy temperatur między danym punktem a otoczeniem (prawo ostygania) można otrzymać równanie opisujące rozkład temperatury w tym przypadku w postaci:
,
gdzie h jest stałą charakteryzującą pręt i ośrodek zewnętrzny.
Prawo Wiedemanna - Franza - stosunek przewodnictwa cieplnego
do przewodnictwa elektrycznego
jest proporcjonalny do temperatury i nie zależy od rodzaju ciała
.
W celu wyznaczenia współczynnika cieplnego metali stosujemy układ pomiarowy przedstawiony na poniższym rysunku.
PRZEBIEG ĆWICZENIA:
1. Zmierzyć odległości między punktami pomiaru temperatury i średnicę pręta.
2. Połączyć obwód grzejnika jak na rysunku.
3. Włączyć grzejnik i poczekać na ustalenie się temperatury.
4. W stanie ustalonym zmierzyć napięcie i prąd grzejnika.
5. Na podstawie tablic sporządzić wykres zależności napięcia termoelektrycznego od różnicy temperatur.
6. Z wykresu znaleźć temperatury kolejnych punktów pomiarowych ( lub odczytać z termometru diodowego).
7. Wykreślić zależność temperatury w pręcie od odległości.
8. Z nachylenia wykresu dla stanu równowagi znaleźć gradient temperatury stosując regresję liniową.
9. Na podstawie równania (2) obliczyć współczynnik przewodnictwa cieplnego.
10. Za pomocą autotransformatora nastawić dwie inne wartości napięcia grzejnika i dla każdej z nich powtórzyć czynności wymienione w punktach 4 - 6.
POMIARY:
średnica |
błąd |
|
|
Tabela pomiarowa:
materiał |
|
u[V] |
i[mA] |
|
|
pomiary
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
aluminium |
0.30 |
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
mosiądz |
0.20 |
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
OBLICZENIA
Klasa amperomierza : 2.5
Klasa woltomierza : 0.5
Błąd pomiaru pola powierzchni:
Błąd pomiaru strumienia:
Błąd pomiaru współczynnika przewodnictwa cieplnego:
nr |
materiał |
|
A |
u |
i |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V |
A |
|
|
|
|
A |
V |
|
|
|
|
1 |
|
|
3.12E-4 |
60 |
0.17 |
3.06 |
-54 |
181.86 |
18.50 |
0.015 |
0.75 |
3.13E-7 |
0.31 |
|
|
2 |
Al |
0.3 |
3.12E-4 |
65 |
0.18 |
3.51 |
-56 |
201.15 |
19.29 |
0.015 |
0.75 |
3.13E-7 |
0.33 |
195.42 |
18.74 |
3 |
|
|
3.12E-4 |
70 |
0.19 |
3.99 |
-63 |
203.25 |
18.43 |
0.015 |
0.75 |
3.13E-7 |
0.36 |
|
|
4 |
|
|
3.13E-4 |
60 |
0.17 |
2.04 |
-59 |
110.61 |
11.25 |
0.015 |
0.75 |
3.13E-7 |
0.21 |
|
|
5 |
mosiądz |
0.2 |
3.13E-4 |
65 |
0.18 |
2.34 |
-63 |
118.82 |
11.39 |
0.015 |
0.75 |
3.13E-7 |
0.22 |
118.19 |
11.33 |
6 |
|
|
3.13E-4 |
70 |
0.19 |
2.66 |
-68 |
125.14 |
11.35 |
0.015 |
0.75 |
3.13E-7 |
0.24 |
|
|
Uwaga:
Gradient
obliczony został programem p. Szuby
Współczynniki korelacji dla wszystkich serii pomiarów wynosiły -1.
Przedstawienie wyników:
a) aluminium
b) mosiądz
WNIOSKI:
W doświadczeniu pręty: aluminiowy i mosiężny były izolowane cieplnie od otoczenia (nie występował przepływ ciepła przez powierzchnie boczne), dzięki czemu można było w obliczeniach bezpośrednio wykorzystać równanie (2). Gradient temperatury obliczony został programem p. Szuby. Ten sam program obliczył także współczynnik korelacji wzajemnej między odległością, w której dokonywany był pomiar temperatury, a temperaturą. Dla wszystkich serii pomiarów wyniósł on -1, co świadczy o dokładnie liniowym charakterze tej zależności. Wynika stąd, że wraz ze wzrostem odległości od końca gorącego temperatura zmniejsza się liniowo. Pomiary przeprowadzone zostały dla trzech wartości napięcia. Ustalanie się równowagi cieplnej dla różnych napięć trwało około 40 minut. Obliczone wartości współczynników rozszerzalności cieplnej dla aluminium i mosiądzu porównywalne są z wartościami tablicowymi (aluminium 226
; mosiądz 85 -109
). Pobrane pomiary potwierdzają także fakt, iż w ciałach o większym współczynniku przewodnictwa cieplnego przekazywanie ciepła do zimnego końca odbywa się szybciej niż w ciałach o niższym współczynniku przewodnictwa cieplnego. Dla mosiądzu temperatura w punkcie 1 była zawsze wyższa niż dla aluminium (w tym samym punkcie); natomiast na końcu pręta (punkt 5) temperatura pręta miedzianego była zawsze niższa niż pręta aluminiowego. Świadczy to o tym, że w pręcie aluminiowym następuje szybciej wymiana ciepła miedzy jego końcami znajdującymi się w różnych temperaturach niż w pręcie mosiężnym.