Zestaw 16
definicja masy w fizyce
prawo Hooke'a. Ruch harmoniczny. Gł charaktery ruchu drgającego
1.
Masa
Definicja o charakterze operacyjnym (recepta na postępowanie). Nieznaną masę m porównujemy ze wzorcem masy 1 kg. Umieszczamy pomiędzy nimi sprężynę i zwalniamy ją. Masy, które początkowo spoczywały polecą w przeciwnych kierunkach z prędkościami v0 i v.
Nieznaną masę m definiujemy jako
2.
Działającą na ciało siłę, która jest proporcjonalna do przesunięcia ciała od początku układu i która jest skierowana ku początkowi układu, nazywamy siłą harmoniczną lub siłą sprężystości. Jeżeli obierzemy oś x wzdłuż przesunięcia, to siła harmoniczna jest wyrażona równaniem
F = - kx
gdzie x jest przesunięciem od położenia równowagi. To równanie opisuje siłę wywieraną przez rozciągniętą sprężynę o ile tylko sprężyna nie została rozciągnięta poza granicę sprężystości. To jest prawo Hooke'a.
Jeżeli sprężyna zostanie rozciągnięta tak aby masa m (zaczepiona do sprężyny) znalazła się w położeniu x = A, a następnie w chwili t = 0 została zwolniona, to położenie masy w funkcji czasu będzie dane równaniem
x = Acosωt
Sprawdźmy czy to jest dobry opis ruchu. Dla t = 0, x = A tzn. opis zgadza się z założeniami. Z drugiej zasady dynamiki Newtona wynika, że
- kx = ma
czyli
- kx = m(dv/dt)
wreszcie
- kx = m(d2x/dt2)
Równanie takie nazywa się równaniem różniczkowym drugiego rzędu. Staramy się "odgadnąć" rozwiązanie i następnie sprawdzić nasze przypuszczenia. Zwróćmy uwagę, że rozwiązaniem jest funkcja x(t), która ma tę właściwość, że jej druga pochodna jest równa funkcji ale ze znakiem "-". Zgadujemy, że może to być funkcja x = Acosωt i sprawdzamy
dx/dt = v = - Aωsinωt
d2x/dt2 = a = - Aω2cosωt
Podstawiamy ten wynik do równania (13.2)
(- kAcosωt) = m(- Aω2cosωt)
i otrzymujemy
ω2 = k/m
Widzimy, że x = Acosωt jest rozwiązaniem równania (13.2) ale tylko gdy
.
Zwróćmy uwagę, że funkcja x = Asinωt jest również rozwiązaniem równania ale nie spełnia warunku początkowego bo gdy t = 0 to x = 0 (zamiast x = A).
Najogólniejszym rozwiązaniem jest
x = Asin(ωt + ϕ)
gdzie ϕ jest dowolną stałą fazową. Stałe A i ϕ są określone przez warunki początkowe.
Wartości maksymalne (amplitudy) odpowiednich wielkości wynoszą:
dla wychylenia A
dla prędkości ωA (występuje gdy x = 0)
dla przyspieszenia ω2A (występuje gdy x = A)