funkcja użyteczności, Studia, mikro


Ogólna charakterystyka funkcji użyteczności

Dla uproszczenia funkcję użyteczności będziemy rozpatrywali jako funkcję dwóch zmiennych. W rzeczywistości może to być funkcja dowolnej liczby zmiennych. Obrazem funkcji użyteczności jest krzywa obojętności.

Krzywa obojętności określa wszystkie kombinacje koszyków dóbr, które przynoszą taką samą satysfakcję konsumentowi, mają tę samą użyteczność. Konsument może dowolnie dobierać koszyki dóbr. Niezależnie od tego ich użyteczność będzie taka sama.

Zbiór krzywych obojętności nazywany jest mapą obojętności. Pokazuje ona stopy substytucji między dwoma towarami dla każdego poziomu ich bieżącej konsumpcji. Im wyżej jest położona krzywa obojętności, tym wyższy poziom satysfakcji z zakupu danych dóbr. Wyraża ona upodobania konsumentów.

0x01 graphic

Te znaczki tylko tak strasznie wyglądają. Naprawdę to jest dużo prostsze i liczy się to szybko i przyjemnie.

U=f(X1, X2) - ogólna postać funkcji użyteczności

ΔU = δU/δX1*ΔX1 + δU/δX2*ΔX2 - przyrost funkcji użyteczności (różniczka)

Jeśli ΔU = δU/δX1*ΔX1 + δU/δX2*ΔX2 = 0 to następuje maksymalizacja użyteczności.

δX2/δX1 = - ((δU/δX1)*ΔX1) / ((δU/δX1)*ΔX2) = MRSX1X2

((δU/δX1)*ΔX1) / ((δU/δX1)*ΔX2) = (MUX1/MUX2)

MUX1 - krańcowa użyteczność dobra X1 (przyrost użyteczności w wyniku zwiększenia konsumpcji dobra X1 o jednostkę)

MUX2 - krańcowa użyteczność dobra X2 (przyrost użyteczności w wyniku zwiększenia konsumpcji dobra X2 o jednostkę)

Nazwa MU pochodzi od angielskiego skrótu Marginal Utility.

Krańcowa stopa substytucji (MRS)

Krańcowa stopa substytucji (MRS - Marginal Rate of Substitiuton) jest to ilość jednego dobra, którą konsument jest skłonny oddać w zamian za dodatkową jednostkę drugiego dobra. Krańcowa stopa substytucji zawsze będzie malejąca. Stosunek tych dwóch wielkości będzie miał wartość ujemną. Swiadczy o tym również malejąca i wypukła krzywa obojętności. Malejąca MRS uważana jest za prawie uniwersalną cechę ludzkich preferencji.

  1. Funkcja użyteczności dla doskonałych substytutów.

0x01 graphic
U = X1 + X2

Użyteczności dóbr będących doskonałymi substytutami są takie same. Zatem są one wymieniane w stosunku 1 : 1. Stąd wynika, że nachylenie wynosi ΔX1/ΔX2 = 1/1. Relacja zastępowalności obu dóbr jest zawsze taka sama. Nie ma znaczenia to, w jakich proporcjach konsumujemy oba dobra.

Równowaga konsumenta dla doskonałych substytutów

0x01 graphic

Punkt równowagi konsumenta wyznaczamy rozwiązując następujący układ równań (szukamy maksimum ograniczenia budżetowego dla X1 = - X2):

U = X1 + X2 - funkcja użyteczności

m = p1X1 + p2X2 - ograniczenie budżetowe

  1. Funkcja użyteczności dla dóbr doskonale komplementarnych.

0x01 graphic
U = min{X1, X2}

Dobra doskonale komplementarne konsumowane są w równych proporcjach. Jeśli wzrasta konsumpcja tylko jednego dobra, to użyteczność się nie zmienia. Dopiero jednakowa zmiana konsumpcji obu dóbr powoduje zmianę użyteczności.

Równowaga konsumenta dla dóbr doskonale komplementarnych

0x01 graphic
Należy rozwiązać układ równań:

X1 = X2 - funkcja użyteczności

m = p1X1 + p2X2 - ograniczenie budżetowe

Aby rozwiązać ten układ trzeba znalezć maksimum ograniczenia budżetowego, gdy X1 = X2.

  1. Funkcja użyteczności Cobb-Douglasa.

0x01 graphic
U = Xα1Xβ2

Istnieje wzajemna zastępowalność dóbr X1 i X2, ale nie są to doskonałe substytuty ani dobra doskonale komplementarne. Nachylenie krzywych obojętności jest równe relacji cen ΔX2/ΔX1 = p1/p2 = MRSx1x2

Równowaga konsumenta dla funkcji Cobb-Douglasa.

0x01 graphic
W punkcie równowagi E:

ΔX2/ΔX1 = p2/p1 = MRSx1x2 = 1

Aby wyznaczyć punkt równowagi, należy rozwiązać następujący układ równań:

U = Xα1Xβ2 - funkcja użyteczności

m = p1X1 + p2X2 - ograniczenie budżetowe

Układ ten rozwiązujemy przy pomocy funkcji Lagrange'a:

λ - krańcowa użyteczność z bogactwa (mówi o tym, o ile wzrośnie użyteczność przy wzroście dochodu o jednostkę). Powtórka z analizy matematycznej wskazana. ;-)

L = Xα1Xβ2 - λ(p1X1 + p2X2 - m)

Pochodne cząstkowe funkcji L przyrównujemy do zera:

δL/δX1 = α(X1)α-1 * X2β - λp1 = 0

δL/δX2 = X1α * β(X2)β-1 - λp2 = 0

δL/δλ = - p1X1 - p2X2 - m

Ponieważ:

α(X1)α-1 * X2β = MUX1

X1α * β(X2)β-1 = MUX2

to:

MUX1 - λP1 = 0

MUX2 - λP2 = 0

- p1X1 - p2X2 - m

MUX1 = λP1

MUX2 = λP2

p1X1 + p2X2 = m

Po przekształceniach:

MUX1/MUX2 = p1/p2

p1X1 + p2X2 = m

Czyli:

MRSX1X2 = p1/p2

p1X1 + p2X2 = m



Wyszukiwarka

Podobne podstrony:
Pojęcie i funkcje rynku, studia, Geografia, Ekonomia
TEORIA UŻYTECZNOŚCI, FiR, Mikro
ekonomia - testy, # Studia #, Mikro-, Makroekonomia
TEORIA UŻYTECZNOŚCI, Studia, Ekonomia, Mikroekonomia i makroekonomia
Cztery płaszczyzny funkcjonowania dziecka, studia różne, Opracowania
FUNKCJONOWANIE POZNAWCZE, Studia Pedagogiczne, Psychologia ogólna
funkcja nauczyciela, Studia, Przedmioty, Pedagogika społeczna
FUNKCJE PEDAGOGIKI, Studia, ROK I, pedagogika
3 funkcja użyteczności i jej własnosci
sciaga iloraz roznicowy funkcji w punkcie, STUDIA, WIL PK, Metody numeryczne
3 funkcja użyteczności i jej własnosci
testy funkcjonalne KD(1), studia fizjoterapia, fizjoterapia
136. Model strategi funkcjonującej w Polsce, STUDIA EDB, Obrona narodowa i terytorialna
Funkcje państwa, Studia UE Katowice FiR, I stopień, semestr II, Makroekonomia
Granica i pochodne funkcji, Ekonomia- studia, matematyka

więcej podobnych podstron