Waldemar Wodecki
Daniel Zając
III MM-DI, L14
Historia operacji w Matlabie
Kryterium Hurwitza:
s=tf('s')
G1=(1.1/(0.9*s+1));
G3=1/(0.02*s+1);
G2=2/(9.8*s+1);
p=[0.1]
G4=p*G1*G2;
Gz1=G4/(1+G3*G4)
Transfer function:
0.03881 s^3 + 1.987 s^2 + 2.358 s + 0.22
--------------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 134.5 s^2 + 23.77 s + 1.22
A2=[81.57 1.556; 134.5 191.4]
A2 =
81.5700 1.5560
134.5000 191.4000
det(A2)
ans =1.5403e+004
A3=[81.57 1.556 0; 134.5 191.4 81.57; 1.22 23.77 134.5]
A3 =
81.5700 1.5560 0
134.5000 191.4000 81.5700
1.2200 23.7700 134.5000
det(A3)
ans =1.9137e+006
A4=[81.57 1.556 0 0; 134.5 191.4 81.57 1.556; 1.22 23.77 134.5 191.4; 0 0 1.22 23.77]
A4 =
81.5700 1.5560 0 0
134.5000 191.4000 81.5700 1.5560
1.2200 23.7700 134.5000 191.4000
0 0 1.2200 23.7700
det(A4)
ans =4.1896e+007
Układ stabilny
p=[1]
G4=p*G1*G2;
Gz2=G4/(1+G3*G4)
Transfer function:
0.3881 s^3 + 19.87 s^2 + 23.58 s + 2.2
-----------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 152 s^2 + 44.96 s + 3.2
A22=[81.57 1.556; 152 191.4]
det(A22)
ans = 1.5376e+004
A23=[81.57 1.556 0; 152 191.4 81.57; 3.2 44.96 152]
det(A23)
ans = 2.0384e+006
A24=[81.57 1.556 0 0; 152 191.4 81.57 1.556; 3.2 44.96 152 191.4; 0 0 3.2 44.96]
det(A24)
ans = 8.2248e+007
Układ stabilny
p=[2]
G4=p*G1*G2;
Gz3=G4/(1+G3*G4)
Transfer function:
0.7762 s^3 + 39.75 s^2 + 47.17 s + 4.4
------------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 171.4 s^2 + 68.5 s + 5.4
A32=[81.57 1.556; 171.4 191.4]
det(A32)
ans = 1.5346e+004
A33=[81.57 1.556 0; 171.4 191.4 81.57; 5.4 68.5 171.4]
det(A33)
ans = 2.1752e+006
A34=[81.57 1.556 0 0; 171.4 191.4 81.57 1.556; 5.4 68.5 171.4 191.4; 0 0 5.4 68.5]
det(A34)
ans = 1.3319e+008
Układ stabilny
p=[10]
G4=p*G1*G2;
Gz4=G4/(1+G3*G4)
Transfer function:
3.881 s^3 + 198.7 s^2 + 235.8 s + 22
------------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 326.6 s^2 + 256.8 s + 23
A42=[81.57 1.556; 326.6 191.4]
det(A42)
ans = 1.5104e+004
A43=[81.57 1.556 0; 326.6 191.4 81.57; 23 256.8 326.6]
det(A43)
ans = 3.2273e+006
A44=[81.57 1.556 0 0; 326.6 191.4 81.57 1.556; 23 256.8 326.6 191.4; 0 0 23 256.8]
det(A44)
ans = 7.6303e+008
Układ stabilny
p=[50]
G4=p*G1*G2;
Gz5=G4/(1+G3*G4)
Transfer function:
19.4 s^3 + 993.7 s^2 + 1179 s + 110
-----------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 1103 s^2 + 1198 s + 111
A52=[ 81.57 1.556; 1103 191.4]
det(A52)
ans = 1.3896e+004
A53=[81.57 1.556 0; 1103 191.4 81.57; 111 1198 1103]
det(A53)
ans = 7.3705e+006
A54=[81.57 1.556 0 0; 1103 191.4 81.57 1.556; 111 1198 1103 191.4; 0 0 111 1198]
det(A54)
ans = 8.5515e+009
Układ stabilny
p=[100]
G4=p*G1*G2;
Gz6=G4/(1+G3*G4)
Transfer function:
38.81 s^3 + 1987 s^2 + 2358 s + 220
-----------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 2073 s^2 + 2375 s + 221
A62=[ 81.57 1.556; 2073 191.4]
det(A62)
ans = 1.2387e+004
A63=[81.57 1.556 0; 2073 191.4 81.57; 221 2375 2073]
det(A63)
ans = 9.9037e+006
A64=[81.57 1.556 0 0; 2073 191.4 81.57 1.556; 221 2375 2073 191.4; 0 0 221 2375]
det(A64)
ans = 2.3064e+010
Układ stabilny
p=[150]
G4=p*G1*G2;
Gz7=G4/(1+G3*G4)
Transfer function:
58.21 s^3 + 2981 s^2 + 3538 s + 330
-----------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 3043 s^2 + 3552 s + 331
A72=[ 81.57 1.556; 3043 191.4]
det(A72)
ans = 1.0878e+004
A73=[81.57 1.556 0; 3043 191.4 81.57; 331 3552 3043]
det(A73)
ans =9.5087e+006
A74=[81.57 1.556 0 0; 3043 191.4 81.57 1.556; 331 3552 3043 191.4; 0 0 331 3552]
det(A74)
ans = 3.3235e+010
Układ stabilny
p=[200]
G4=p*G1*G2;
Gz8=G4/(1+G3*G4)
Transfer function:
77.62 s^3 + 3975 s^2 + 4717 s + 440
-----------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 4013 s^2 + 4729 s + 441
A82=[ 81.57 1.556; 4013 191.4]
det(A82)
ans = 9.3683e+003
A83=[81.57 1.556 0; 4013 191.4 81.57; 441 4729 4013]
det(A83)
ans = 6.1857e+006
A84=[81.57 1.556 0 0; 4013 191.4 81.57 1.556; 441 4729 4013 191.4; 0 0 441 4729]
det(A84)
ans = 2.8725e+010
Układ stabilny
p=[230]
G4=p*G1*G2;
Gz9=G4/(1+G3*G4)
Transfer function:
89.26 s^3 + 4571 s^2 + 5424 s + 506
-----------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 4595 s^2 + 5436 s + 507
A92=[81.57 1.556; 4595 191.4]
det(A92)
ans = 8.4627e+003
A93=[81.57 1.556 0; 4595 191.4 81.57; 507 5436 4595]
det(A93)
ans = 2.7810e+006
A94=[81.57 1.556 0 0; 4595 191.4 81.57 1.556; 507 5436 4595 191.4; 0 0 507 5436]
det(A94)
ans = 1.4646e+010
Układ stabilny
p=[249]
G4=p*G1*G2;
Gz10=G4/(1+G3*G4)
Transfer function:
96.63 s^3 + 4949 s^2 + 5872 s + 547.8
-------------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 4964 s^2 + 5883 s + 548.8
A102=[81.57 1.556 ; 4964 191.4]
det(A102)
ans = 7.8885e+003
A103=[81.57 1.556 0; 4964 191.4 81.57; 548.8 5883 4964]
det(A103)
ans = 8.4728e+004
A104=[81.57 1.556 0 0; 4964 191.4 81.57 1.556; 548.8 5883 4964 191.4; 0 0 548.8 5883]
det(A104)
ans = 7.8897e+007
Układ stabilny
p=[250]
G4=p*G1*G2;
Gz11=G4/(1+G3*G4)
Transfer function:
97.02 s^3 + 4969 s^2 + 5896 s + 550
-----------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 4984 s^2 + 5906 s + 551
A112=[81.57 1.556 ; 4984 191.4]
det(A112)
ans = 7.8574e+003
A113=[81.57 1.556 0 ; 4984 191.4 81.57; 551 5906 4984]
det(A113)
ans = -6.5359e+004 < 0
A114=[81.57 1.556 0 0; 4984 191.4 81.57 1.556; 551 5906 4984 191.4; 0 0 551 5906]
det(A114)
ans = -8.0236e+008 < 0
Układ niestabilny
p=[300]
G4=p*G1*G2;
Gz12=G4/(1+G3*G4)
Transfer function:
116.4 s^3 + 5962 s^2 + 7075 s + 660
-----------------------------------------------------------
1.556 s^5 + 81.57 s^4 + 191.4 s^3 + 5954 s^2 + 7083 s + 661
A122=[81.57 1.556 ; 5954 191.4]
det(A122)
ans = 6.3481e+003
A123=[81.57 1.556 0 ; 5954 191.4 81.57 ; 661 7083 5954]
det(A123)
ans = -9.2476e+006 < 0
A124=[81.57 1.556 0 0; 5954 191.4 81.57 1.556; 661 7083 5954 191.4; 0 0 661 7083]
det(A124)
ans = -6.5711e+010 < 0
Układ niestabilny
Kryterium Hurwitza nie pozwala określić, ile pierwiastków równania charakterystycznego ma dodatnią część rzeczywistą, czyli „ile pierwiastków psuje stabilność”, jak również brak jest odpowiedzi na pytanie, jak daleko układ znajduje się od granicy stabilności.
Kryterium Nyquista:
>> nyquist(Gz1)
>> nyquist(Gz2)
>> nyquist(Gz3)
>> nyquist(Gz4)
>> nyquist(Gz5)
>> nyquist(Gz6)
>> nyquist(Gz7)
>> nyquist(Gz8)
>> nyquist(Gz8)
>> nyquist(Gz9)
>> nyquist(Gz10)
>> nyquist(Gz11)
>> nyquist(Gz11)
>> nyquist(Gz12)