Refraktometr - jest przyrządem do badania współczynników załamania światła w różnych środowiskach, przede wszystkim w cieczach. Nowoczesne refraktometry posiadają automatyczną kompensację temperatury i łatwo je kalibrować.
Refraktometr stosuje się np. do określenia:
odporności na zamarzanie płynu w układzie chłodzenia lub w spryskiwaczu samochodowym,
gęstości elektrolitu w akumulatorze,
ilości rozpuszczonych substancji, np. stopień zasolenia wody morskiej.
stężenia chłodziw wodnych (mineralnych, syntetycznych i roślinnych) stosowanych w przemyśle obróbczym i szlifierskim metali.
Np. przy pomiarze zawartości wody w miodzie światło załamuje się mniej lub więcej w zależności od jej ilości, co jest widziane przez okular, a umieszczona tam skala pozwala na szybki odczyt.
Kąt graniczny - maksymalny kąt, pod jakim promień świetlny może padać na granicę ośrodków, ulegając przy tym załamaniu. Występuje tylko w sytuacji, gdy światło rozchodzące się w ośrodku o współczynniku załamania n1 pada na granicę z ośrodkiem o współczynniku załamania n2, takim że n2 < n1.
Przy wzroście kąta padania promienia powyżej wartości kąta granicznego, promień nie załamuje się i pojawia się efekt całkowitego wewnętrznego odbicia.
Wartość kąta granicznego można obliczyć ze wzoru Snelliusa, podstawiając za kąt załamania 90°
a zatem:
gdzie n2 jest współczynnikiem załamania ośrodka, od którego światło się odbija.
Całkowite wewnętrzne odbicie to zjawisko fizyczne zachodzące dla fal (najbardziej znane dla światła) występujące na granicy ośrodków o różnych współczynnikach załamania. Polega ono na tym, że światło padające na granicę od strony ośrodka o wyższym współczynniku załamania pod kątem większym niż kąt graniczny, nie przechodzi do drugiego ośrodka, lecz ulega całkowitemu odbiciu.
Kąt graniczny - P - promień padający pod kątem αgr, Z - promień załamany pod kątem β=90°, N - normalna padania.
Światło padające na granicę ośrodków
i
pod kątem mniejszym od granicznego zostaje częściowo odbite a częściowo przechodzi do drugiego ośrodka (jest załamane). Jeżeli
to współczynnik załamania ośrodka
, a
współczynnik załamania ośrodka
i
wtedy kąt padania
jest mniejszy niż kąt załamania
. Przy pewnym kącie padania
, zwanym granicznym, kąt załamania
jest równy 90º. Dla kątów padania większych niż
(zakreskowany zakres kątów na ilustracji) światło przestaje przechodzić przez granicę ośrodków i ulega całkowitemu odbiciu wewnętrznemu.
Na mocy prawa załamania:
dla
,
dlatego wartość kąta granicznego,
:
.
Zjawisko to jest wykorzystywane w pryzmatach oraz światłowodach. Jest także przyczyną powstawania refleksów w oszlifowanym diamencie.
Zasada Huygensa (czytaj: hojchensa, błędnie: zasada Huyhensa) - sformułowana przez Christiaana Huygensa mówiąca, iż każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane są falami cząstkowymi i interferują ze sobą. Wypadkową powierzchnię falową tworzy powierzchnia styczna do wszystkich powierzchni fal cząstkowych i ją właśnie obserwujemy w ośrodku.
Zasada Huygensa nie określa amplitudy fali. W ogólnym przypadku amplituda ta będzie zależała od geometrii układu i kierunku, w którym fala się porusza. Na przykład, jeżeli na drodze fali znajdzie się przeszkoda z pojedynczym otworem, wówczas, jak zauważył Gustav Kirchhoff, amplituda fali będzie największa w tym kierunku, w którym fala pierwotnie się rozchodziła. Kirchhoff podał przybliżony wzór opisujący zmianę amplitudy A w funkcji kąta θ
Zjawisko uginania się fali na przeszkodach, wynikające wprost z zasady Huygensa, nazywa się dyfrakcją.
Interferencja (łac. inter - między + ferre - nieść) to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których mogą rozchodzić się dane fale. W ośrodkach nieliniowych oprócz interferencji zachodzą też inne zjawiska wywołane nakładaniem się fal, w ośrodkach liniowych fale ulegając interferencji spełniają zasadę superpozycji.
Dyfrakcja (ugięcie fali) to zjawisko fizyczne zmiany kierunku rozchodzenia się fali na krawędziach przeszkód oraz w ich pobliżu. Zjawisko zachodzi dla wszystkich wielkości przeszkód, ale wyraźnie jest obserwowane dla przeszkód o rozmiarach porównywalnych z długością fali.
Dyfrakcja używana jest do badania fal oraz obiektów o niewielkich rozmiarach, w tym i kryształów, ogranicza jednak zdolność rozdzielczą układów optycznych.
Jeżeli wiązka fal przechodzi przez szczelinę lub omija obiekt, to zachodzi zjawisko ugięcia
Doświadczenie Younga - eksperyment polegający na przepuszczeniu światła spójnego przez dwie blisko siebie położone szczeliny i obserwacji obrazu powstającego na ekranie. Wskutek interferencji na ekranie powstają jasne i ciemne prążki w obszarach, w których światło jest wygaszane lub wzmacniane.
Warunek powstania maksimum:
Warunek powstania minimum:
gdzie:
k - rząd prążka (dla k = 0 powstaje najjaśniejszy prążek centralny),
d - odległość między szczelinami,
λ - długość fali padającego światła,
αk - kąt pod jakim tworzy się k-te maksimum lub minimum i może być widoczne na ekranie (względem prostej przechodzącej przez środek odległości między szczelinami w kierunku padającego na nie promienia światła);
Eksperyment potwierdził falową naturę światła i stanowił poważny argument przeciwko korpuskularnej koncepcji światła, której zwolennikiem był Isaac Newton. Po raz pierwszy eksperyment ten wykonał około roku 1805 Thomas Young, fizyk angielski.
Bardziej widowiskowy i łatwiejszy sposób wykonania tego doświadczenia, polega na użyciu siatki dyfrakcyjnej, czyli płytki ze szkła, na której gęsto zarysowane są rysy pełniące rolę przesłon pomiędzy szczelinami. Obraz interferencyjny widoczny w tym przypadku na ekranie jest znacznie wyraźniejszy i jaśniejszy niż przy użyciu jedynie dwóch szczelin.