Kiniuś™
Statystyka
Dr Elżbieta Grabowska
(notatki z wykładu 2)
13.03.2009
Opis Statystyczny - służy do charakterystyki próby, polega na liczeniu interpretacji wskaźników.
Rodzaje wskaźników opisu statystycznego:
Wskaźniki położenia - co w badanej próbie jest najczęstsze, typowe, środkowe lub przeciętne czyli pokazują tendencję centralną rozkładu danych w próbie.
Wskaźniki Zróżnicowania (rozproszenia, dyspersji) - pokazują, jaki jest rozrzut wokół tendencji centralnej, czyli na ile badana próba jest jednorodna bądź zróżnicowana.
Wskaźniki skośności ( asymetrii) - pokazują stopień przewagi wyników niskich albo wysokich w badanej próbie.
Wskaźniki koncentracji - pokazują na ile rozkładanych jest wysmukły (leptokurtyczny), albo spłaszczony (platokurtyczny)
! Wszystkie wskaźniki opisu statystycznego odnoszą się do badanej próby i nie wolno na ich podstawie wyciągać wniosków ogólnych o całej populacji.
+ tabela wskaźników z ekstranetu
Opis dla danych jakościowych wyrażonych na skali nominalnej
Wszystkie analizy jakościowe rozpoczynamy od tabelaryzacji danych.
Najprostsza tabela dla jednej cechy jakościowej:
Najprostszym wskaźnikiem położenia jest kategoria modalna, czyli
kat. |
k |
m |
l.os. |
80 |
10 |
% |
88,89 |
11,11 |
nazwa kostki do której zaliczano najwięcej obiektów. W przypadku
naszej tabelki kategorią modalną jest nazwa „kobiety”
Kategoria modalna może nie wystąpić w ogóle gdy, w obu kategoriach byłoby tyle samo obiektów, np. 45 kobiet i 45 mężczyzn.
Częstość kategorii modalnej
Dla każdej kostki można wyznaczyć częstość w postaci ułamka lub %.
n - liczebność grupy obiektów z kategorii modalnej
N- liczebność całej próby
na podst. tabeli:
Częstość kategorii modalnej (najsilniejszej kategorii dominującej)
[ Maksymalna dominacja 100% byłaby gdyby kostka `m' była pusta]
Kiniuś™
Cm - nie ma stałej wartości minimalnej jest ona zmienna i zależy od liczby kategorii
K |
Min. Cm - umowne zero dominacji |
2 3 4 5 6 7 8 9 10 |
50 % 33,3 % 25 % 20 % 16,7 % 14,3 % 12,5 % 11,1 % 10 % |
Palący |
Niepalący |
100 |
0 |
N = 100
Kostka palący dominuje (dominacja max.)
Palący |
Niepalący |
51 |
49 |
Palący - kat.mod. dominująca
51% - minimalna dominacja
Palący |
Niepalący |
50 |
50 |
C1 = C2
Częstość kat.1 jest równa kat. 2. Nie ma kostki dominującej.
Czy lubisz kolor różowy?
Lubię |
Obojętne |
Nie lubię |
90 |
0 |
0 |
Cm = dominacja max.
Kat. modalna - lubię
Lubię |
Obojętne |
Nie lubię |
30 |
30 |
30 |
Nie ma Cm , nie ma dominacji
C1 = C2 = C3
Lubię |
Obojętne |
Nie lubię |
30 |
29 |
31 |
Kat. modalna - nie lubię
Cm = min. dominacja
Poziom uzdolnienia uczniów w klasie:
b.zdolni |
przeciętni |
n.zdolni |
10 |
15 |
5 |
33,3 (zero umowne)
50% klasy jest przeciętnie zdolna
0 20 40 50 60 80 100 %
Siła dominacji jest umiarkowana.
(od zera umownego podzielić oś na 4 równe części - siły dominacji: słaba, umiarkowana, znaczna, bardzo duża)
Kiniuś™
Podstawowym wskaźnikiem rozproszenia dla danych jakościowych jest DYSPERSJA WZGLEDNA KLASYFIKACJI. Wyznaczamy ją ze wzoru:
N - liczebność próby
k - liczba kategorii
j - numer kolejny kategorii
[] - dane zostały uporządkowane ze względu na wielkość ( od największej do najmniejszej)
- sumowanie kolejnych obiektów (zastępuje dodawanie)
z - ostatni element sumowania, x - pierwszy element sumowania
np.
- sumowanie od kategorii 2 (z pominięciem 1) i bez kategorii ostatniej
- sumowanie od 3 kategorii bez 2 ostatnich
h przyjmuje wartości ściśle od 0 do 1
brak zróżnicowania
(grupa maksymalnie
jednorodna)
0 < h < 1
maksymalne zróżnicowanie
(grupa maksymalnie rozproszona)
ilość członków partii politycznych
27 |
0 |
0 |
h = 0 grupa max. jednorodna
9 |
9 |
9 |
h = 1 grupa max. rozproszona
2 |
18 |
7 |
h = 0,5 zróżnicowanie przeciętne
18 |
19 |
17 |
grupa zróżnicowana
1 |
20 |
1 |
grupa jednorodna
Aby policzyć h należy:
- sprawdzić czy klasyfikacja jest zupełna i rozłączna
- uporządkować dane w szereg nierosnący, czyli od kategorii największej do najmniejszej
- odrzucić 1 kategorię w uporządkowanym szeregu
- podstawić do wzoru
- ! zinterpretować wynik
Kiniuś™
Zad. Zapytano matki, jakie kary najczęściej stosują wobec swoich dzieci.
Kat. |
lanie |
klaps |
awantura |
marudzenie |
obcięcie kieszonkowego |
szlaban |
rzeczowa |
l.os |
2 |
18 |
15 |
15 |
16 |
17 |
2 |
Cm = klaps
Częstość Cm =
7 kategorii - zero umowne - 14,3 Siła dominacji słaba
0 14,3 20 40 60 80 100 %
słaba umiarkow. znaczna b.duża
14,3 35,7 57,2 78,5 100
21,1
grupa zróżnicowana
j (numer kolejny kategorii) |
n[j] (od największej!) |
1 2 3 4 5 6 7 |
18 17 16 15 15 2 2 |
|
N=85 |
kat. 1 odrzucamy bo j=2
0 < h < 1 ( h przybiera wartości od 0 do 1)
Badana grupa jest dość silnie zróżnicowana, ze względu na rodzaj stosowanych najczęściej kar.
Kiniuś™
Zad.
Nauczyciel geografii odpytuje ze znajomości rzek w Europie.
Rewelacja |
Przeciętnie |
Słabo |
Tragicznie |
1 |
3 |
10 |
10 |
Cm - brak
4 kategorie
j |
n[j] |
2 3 4 |
10 10 3 1 |
0 < h < 1
Zróżnicowanie grupy uczniów pod względem znajomości rzek w Europie jest przeciętne
5
Kategoria modalna
21,1