498 Rozwiązania i odpowiedzi
20.116. Mx = Vp[^2*-P3]o = Wp(V4+p3-pVp).
20.117. MJt=i[^8+|i7-|<5]0_l = 5|5, M, = [fr7-J*«-fl*+!*♦]!!,-£
rVi +cos4*
20.118. Mx = ±
cos2 X
—arsinhcos2 x =0,6110
2 r
20.119. t\ = —
n
4 r
3it 3 r
8
20.122. Na osi stożka w odległości \h od podstawy.
20.123.
20.124. 0 =
a(e2 +4 — e~2)
2(e-e'1)
20.126. <*= — a, gdzie M
L=[—jcos2 0-§cos3 0—2cos4 0 -|cos5 0+2cos60+cos7 0+2cos80]ó , M = [ - cos 0 - 2 cos2 0 - f cos3 0+\ cos4 0 +cos5 0 +-5COS6 0]£ , i ostatecznie £=\a.
3 */6
20.127. | sin6^t=1^-[-Ti5sin6r + ^sin4f-i|sin2/+^f]^2,
nl 12
nf 6
8r3
2 ^cos tdt= —— [|sin6/+jsin4f+isin2t + ln|cost|]*//612
8r3 f sin 71
P J 1 —sin2
ir/12
2
20.128.
20.129.
20.130. £=-p— [|t2 +f sin t ( — -y+| cos f — 3 cos2 t) —
-| cos f-|cos2 t + | cos3 t-jC0S4 t +^]5 = iJ (jit+||rc'
3 a 3
20.131. £=— [5 sin f-2 sin7/-^-sin9 r]S/2 = |f|-(n/71),
20.169. J (H-jc)2 xdx = 30n kGm. 20.170. — 1 J= 1598 kGm
jc f ,- I4ji«2 /*
*12
20.172. L=mgR j (cos <p+//sin <p) d(p=mgR{ 1+;<)• o
DO ROZDZIAŁU XXI
♦ +0
20.132. i=1ibn~1(n-2), r,= 'ean. 20.133. £=ff, r? = T|i.
20.134. t=±a, r, = ±a. 20.135. <po = 0, r0 = fa. 20.136. Z = \x0, >/ = §y0.
R-r1\2
20.160. t = ——~ I
nr2 V2gJ
15^
20.161. 144 kG, 108 kG. 20.162. 240000 kG.
20.164. 250 nK4kGm. ™ 1 ~u2
h
20.165. \ah2
20.163. ;r
20.166. 17 ±t.
20.167. x =
20.168. 2 J x \/4x — x2 dx='J,2nt.
21.4. /= lim [-x —ln (1 —x)]i~'=+oo .
21.5. /= lim [|xł]i=f
£-> + 0
21.7. /= lim [4xł]*6 = 8.
£-♦ + 0
21.6. J = lim (j^] -
e-*+0\ 3 \J%JE
21.8. /= lim [2v/2^]816 = 4v/2.
: +00 .
2x-(a+b)\b-‘2
arcsin- =Jt
b-a J„
/ a + t\
«2“* + 0 V1?
21.12. / = i J
= lim | [arcsin |x2]oł
21.9. /= lim [f^=§-£-• + 0
21.11. /= lim I arcsi
£.-+0 \
6x dx
~~7— = nm z
V22-(3x2)2 £-+o6
/ . *Y“e n
21.10. /= lim I arcsin — ) = —.
£-+0\ /o ^